

Copyright © 2006 by YET, Yaskawa Eshed Technology Ltd.

XtraDrive User Manual

Catalog No. 8U0108 June 2006

All rights reserved. No part of this publication may be stored in a retrieval system, or reproduced in any way, including but not limited to photocopy, photography, magnetic or other recording, without the prior agreement and written permission of the publisher. Program listings may be entered, stored and executed in a computer system, but not reproduced for publication.

This guide is designed to provide information about the XtraDrive hardware. Every effort has been made to make this guide complete and as accurate as possible. However, no warranty of suitability, purpose or fitness is made or implied. YET Ltd. is not liable or responsible to any person or entity for loss or damage in connection with or stemming from the use of **XtraDrive** and/or the information contained in this publication.

YET Ltd. bears no responsibility for errors, which may appear in this publication and retains the right to make changes to the products and the guide without prior notice.

MAIN OFFICE: **YET Ltd. Israel** 13 Hamelacha St. Afeq Industrial Estate Rosh Ha'ayin 48091 ISRAEL Tel: +972-3-9004114 Fax: +972-3-9030412 E-mail: info@yetmotion.com Homepage: www.yetmotion.com

USA OFFICE: **YET US Inc.** 444 East Industrial Park Drive Manchester, NH 03109-5317 USA Toll Free: 866-YET-8080 Tel: 603-641-1822 Fax: 603-641-1239 E-mail: info@yet-motion.com Homepage: www.yet-motion.com

WARNING

YET manufactures component parts that can be used in a wide variety of industrial applications. The selection and application of YET products remain the responsibility of the equipment designer or end user, YET accepts no responsibility for the way its products are incorporated into the final system design.

Under no circumstances should any YET product be incorporated into any product or design as the exclusive or sole safety control. Without exception, all controls should be designed to detect faults dynamically and fail safely under all circumstances. All products designed to incorporate a component part manufactured by YET must be supplied to the end user with appropriate warnings and instructions as to that part's safe use and operation. Any warnings provided by YET must be promptly provide to the end user.

YET offers an express warranty only as to the quality of its products in conforming to standards and specifications published in YET's manual. NO OTHER WARRANTY, EXPRESS OR IMPLIED, IS OFFERED. YET assumes no liability for any personal injury, property damage, losses, or claims arising from misapplication of its products.

Product Listings:

USING THIS M.	ANUAL		X			
INTRODUCTION			XI			
CHAPTER 1	INSTALLATION					
	1.1	Safety Precautions				
	1.2	Notes for Safe Operation	1			
		Checking on Delivery	3			
		Storage and Transportation	3			
		Installation	3			
		Wiring	4			
		Wiring (continued)				
		Operation				
		Maintenance and Inspection	6			
		Disposal	6			
	1.3	Warning Label	6			
	1.4	Parts	7			
	1.5	Checking Products on Delivery	8			
	1.6	Appearance and Nameplate	8			
	1.7	Type Designation	9			
	1.8	Installation				
	1.9	Operating Conditions				
	1.10	Installation Sites				
	1.11	Orientation				
	1.12	Multiple XtraDrive Installation				
		Where Mounted Side by Side				
		Environment Inside Control Box				
	1.13	Wiring Main Circuit Terminal Blocks				
		Connection Procedure				
	1.14	Wiring				
		Molded-Case Circuit Breaker and Fuse Capacity				
		Main Circuit Wiring				
		Main Circuit Wire Size				
		Grounding System				
	1.15	AC Power Source Supply				
	1.16	DC Power Source Supply				
	1.17	Noise Control				
		Signal Line Wire Sizes				
CHAPTER 2	Svst	YEM OVERVIEW	19			
	2.1	Functioning System	19			
	2.1	Computer System Requirements	20			
		XtraWare Software Installation	20			
		The XtraDrive System Components	21			
		The XtraDrive System Configurations	22			
	2.2	Connections to the XtraDrive	23			
	2.2	XtraDrive Cables	23			
		Communication Cables				
CHAPTER 3	Арр	LYING POWER	25			
	1 11 F	Environmental Factors	25			
		Determining Drive AC Voltage Requirements	25 26			
		Connecting The XtraDrive To An AC Power Supply				
		Table: Main Circuit Names and Description	26			
	3.1	Connections to the XtraDrive	20			
		Connecting Feedback Cable and Motor Power	31			
		through the terminal block				

through the terminal strip

Connecting Feedback Cable and Motor Power _____32

CHAPTER 4	TRA	IL OPER	ATION TESTING THE SYSTEM		
	4.1	Two Me	thods of Testing		
			Two Methods of Trial Operation		
	4.2	Power C	Connections Used in this Example		
	4.3	Compu	ter, XtraDrive, and Servo Motor Connections		
		1	Establishing Communications Between the PC and the XtraDrive		
			Communications Settings		
			Communications Menu - On-Line Option		
			Using the JOG Function		
	4.4	JOG Or	peration Using Operator Panel		
			Working with the XtraDrive Operator Panel		
			Basic Mode Selection		
			Operating Procedure		
CHAPTER 5	I/O	SIGNALS	, CN-1 Connector, Encoder Interface, CN-2 Connector		
	5.1	CN-1 S	pecifications		
			CN-1 Terminal Lavout		
	5.2	I/O Sig	nal Names and Functions		
			Input Signals	43	
			Output Signals	44	
	5.3	Interfac	ce Circuits	45	
			Interface for Reference Input Circuits	45	
			Input Circuit Interface	46	
			Output Circuit Interfaces	47	
	5.4	CN-1 W	Viring Diagrams for Operational Modes	49	
	5.5	Encode	r Interface CN-2 Connector	55	
	0.10	2110000	CN-2 Connector Models	55	
			CN-2 Pin Positions		
Cut prep 6	Uan		TO A WARD SETTID WARARD	57	
CHAPTER U	6.1 Setup the Mode of Operation				
	0.1	Setup ti	Open Up YtreWare		
			User Position Units		
			Speed Units RPM		
CHAPTER 7	PAR	AMETER	SETTINGS AND FUNCTION		
			Derometer Configurations		
	71	Catting	According to Device Characteristics		
	/.1	7 1 1	Switching Composition Direction		
		/.1.1	Switching Servo Motor Kotation Direction		
		710	Setting Reverse Rotation Mode		
		1.1.2	Joing the Overtravel Function		
			Using the Overtraver Function		
			Enabling/Disability input Signals		
		712	Limiting Tensors		
		1.1.5	Catting Long 1. Internal Toward Limits		
			Setting Level 1: Internal Torque Limits		
	7.0	Catting	Setting Level 2: External forque Limit		
	1.2	Settings	According to Host Controller		
		1.2.1	Speed Kelerence		
			Setting Examples		
		7 2 2	Input Circuit Example		
		1.2.2	Position Reference		
			Reference by ruise input		

TABLE OF CONTENTS III

		Selecting a Reference Pulse Form	
		Error Counter Clear Input	
	7.2.3	Using the Encoder Signal Output	
		I/O Signals	
		Pulse Divider Setting	
	7.2.4	Programmable I/O Signals	
		Input Signal Connections	89
		Output Signal Connections	90
	725	Using the Electronic Gear Function	91
	7.2.0	Setting the Electronic Gear (for Reference Pulses)	91
		Flectronic Gear Setting Examples	93
		Control Block Diagram	94
	726	Contact Input Speed Control	95
	7.2.0	Using Contact Input Speed Control	95
		Operation By Contact Input Speed Control	97
		Selection of Rotation Direction	98
		Example of Contact Input Speed Control Operation	00
	7 2 7	Using Torque Control	100
	1.2.1	Torque Control Selection	100
		Input Signals	103
		Default Sottings	103
		Example of an Input Circuit	103
		Example of an input Circuit	104
	7 7 0	Torque Control Faranteler	103
	1.2.8	Iorque Feed-Forward Function	100
		Using the Torque reed-rorward Function	107
	720	Torque Limiting hy Angles Velters Deference	100
	1.2.9	Initian Terrera Limitian has Analog Valtage Defense	100
		Using Torque Limiting by Analog Voltage Reference	100
	7 2 10	Defense Deles Inhibit Francisco (/INHUDIT)	109
	7.2.10	Kelerence Pulse Innibit Function (/INHIBIT)	110
		Using Reference Pulse Inhibit Function (/INHIBIT)	
7.2		Relationship between inhibit Signal and Reference Pulses	
1.3	Input Ci	Ircuit Signal Allocation	112
		Examples of Input Signal Allocation	
7.4	0.4	Allocating Other Input Signals	
7.4	Output	Circuit Signal Allocation	
		Output Signal Allocation	
		Output Signal Selection Default Settings	
		Allocating Other Output Signals	
7 -	/.4.1	Control Mode Selection	
1.5	Setting	Stop Functions	
	/.5.1	Adjusting Offset	
		When the Servo Motor Will Not Stop	
	7.5.0	Reference Offset Adjustment	
	7.5.2	Servo OFF Stop Mode Selections	
	7.5.3	Using the Zero Clamp Function	
		Zero Clamp Function	
		Parameter Setting	
		Setting Motor Speed	
	7.5.4	Using the Holding Brake	
		Wiring Example	
		Brake ON Timing	
	- ·	Holding Brake Setting	
7.6	Formin	g A Protective Sequence	
	7.6.1	Using Servo Alarm and Alarm Code Outputs	
	7.6.2	Using Servo ON Input Signal (/S-ON).	
	7.6.3	Using the Positioning Completed Output signal (/COIN)	

CHAPTER 8

	7.6.4	Speed Coincidence Output (/V-CMP)	
	7.6.5	Using the Running Output Signal (/TGON)	13
	7.6.6	Using the Servo Ready Output Signal (/S-RDY)	
	7.6.7	Using the Warning Output Signal (/WARN)	
	7.6.8	Handling Power Loss	
7.7	Selection	ng a Regenerative Resistor	
	7.7.1	External Regenerative Resistor	
		Connecting Regenerative Resistors	
	7.7.2	Calculating the Regenerative Power Capacity	
		Simple Calculation Method	
		Regenerative Energy Calculation Method	
7.8	Absolu	ite Encoders	
	7.8.1	Interface Circuit	
		SEN Signals	
	7.8.2	Configuring an Absolute Encoder	
	7.8.3	Absolute Encoder Setup	
		Multi-Turn Setup	
	7.8.4	Absolute Encoder Reception Sequence	
		Outline of Absolute Signals	
		Contents of Absolute Data	
		Absolute Encoder Transmission Sequence	
		Detailed Signal Specifications	
		Transferring Alarm Contents	
7.9	AB En	coders	
7.10	Config	uration of Serial Commands for AB Encoders	
	7.10.1.	Position Control	
		.1 Defining User Units for Motion Profiles	
		.2 Position Units	
		.3 Speed Units	
		.4 Acceleration Units	
		.5 Setting Default Motion Profile Parameters	
		.6 Profile Speed (Pn2A2, Pn2A3)	
		.7 Profile Acceleration (Pn2A4, Pn2A5)	
		.8 Jerk Smoothing Time (Pn2A6)	
		.9 Quick Stop Deceleration (Pn2A8)	
		.10 Motion End Window (Pn2C0)	
	7.10.2.	Torque Control	
		.1 Torque Slope (Pn2C1)	
	7.10.3	Homing	
	7.10.4	Digital I/O	
	7.10.5	Auto Tuning	
7.11	Auto R	Running a User Program	
Cont			16
SERV 0 1	V ADJU	SIMENI	
0.1	Analaz	UII OI COIIII OI MOde	
0.2		Principle and Plack Diagram of the Valocity Control	
	0.2.1 0.2.1	Parameters of the Valority Control	
	0.2.2 0.2.2	Softing the Input Coin	
	0.2.5	A diusting Offset	
	0.2.4	Adjusting Offset	
		External Circuitry	160
		BAUMAI CHUILLY	
	825	Ising the Soft Start Function	
	0.2.J 876	Load Inartia Satting	
	0.2.0 8 2 7	Adjusting Speed Loop Gain	
	0.2.1	Aujusung specu Loop Gam	

		8.2.8	Setting the Torque Reference Filter Time Constant	173
		8.2.9	Notch Filter	173
		8.2.10	Gain Setting Reference Values	174
			Machines with High Rigidity	1/4
			Machines with Medium Rigidity	1/4
	0.2	NCTD	Machines with Low Rigidity	1/4
	8.3	NCT P0	Silion Control	1/0
		8.3.1 8.2.2	Load Inertia Setting	170
		0.3.2 9.2.2	NCT Coin Deremotors	170
		0.3.3	Kd (Dr1 AC) Dongo 0 2000 [Hz] dofoult 20;	179
			Ku (PIIIAC) Kalige 0-2000 [Hz] default 50:	170
			Kp (FIIIAA) Kaige 0-500 [Hz] default 40.	179
			Kiv (PillAD) falige 0-500 [Hz], default 50:	170
			Kis (FIIIA9) range 0.500 [HZ] default 0. Filter $Dr1AE$ range 0.	179
			2500[0.01ms] default 200:	180
			Kff (Pn1 AF) range 0.200 [%] default 0. This parameter is used of	100
			in a serial command (Pn000 1–D):	180
		831	OCA - Oscillation Canceling Algorithm	180
		835	Additional Parameters Tuning	181
		836	Filters	181
		0.5.0	Kd Filter (Pn1A2) Range 30-3200[0.01ms] Default 40:	181
			Torque Filter (Pn1A4) Range 0-2500[0.01ms], Default 20:	181
			Second Order Torque Filter (Pn1A5), Range 0-1000 [0.1%] Default 0:	182
			Command Smoothing (Pn216), Range 0-65536 [0.1ms], Default 0:	182
		837	Flexible System Parameters	182
		0.0.7	K Spring (Pn1BB) Range 10-2000 [Hz] default 2000:	182
			Kfb Spring (Pn1BD) range 10-2000 [Hz] default 2000:	
		8.3.8	Gain Factor	183
			Tightness (Pn1A0), Range 0-500[%], Default 60:	183
			Maximum of Variable Gain MAXKG (Pn1B5), Range 100-1000	[%],
			Default 160:	183
		8.3.9	Integral Clear Parameters	183
			Integral Clear Mode (Pn1A7, digit 0):	183
			Integral Clear Timing (Pn1BF), Range 1-15, Default 3:	183
			Integral Offset Averaging Time (Pn1C0), Range 0-25[ms], Default 0	: 183
		8.3.10	Tuning Procedure for Position Control Parameters	184
			System Requirements	184
			The Tuning Steps	184
	8.4	Analog	Monitor	186
C A	**	T 0	D	100
CHAPTER 9	USIN	G THE O	PERATOR PANEL	.189
	9.1		Operation	100
		9.1.1	Display Massages	100
		012	Display Messages	190
		9.1.2	Light the Puilt In Operator Denal	101
		013	Basic Mode Selection	101
		9.1.5	Status Display Mode	102
		7.1.4	Selecting Status Display Mode	102
			Data in Status Display Mode	102
		915	Operation in Parameter Setting Mode	194
		2.1.2	Changing Parameter Value Settings	194
			Function Selection Parameters	196
			Display Definition for Function Selection Parameters	197
			Changing Function Selection Parameters	198
		9.1.6	Operation in Monitor Mode	
			Using the Monitor Mode	199

CHAPTER 10

		Contents of Monitor Display	20
		Programmable I/O Signal Monitor Display	20
		Output Signal Monitor Display	20
		Reference Pulse/Feedback Pulse Counter Monitor Display	20
9.2	Applied	l Operation	20
	9.2.1	Operation in Alarm Traceback Mode	
		Checking Alarms	20
	9.2.2	JOG Operation	20
	9.2.3	Automatic Adjustment of Speed and Torque Reference Offset	
	9.2.4	Manual Adjustment of Speed and Torque Reference Offset	
		Manual Adjustment of Torque Reference Offset	21
		Clearing Alarm Traceback Data	21
		Checking the Motor Model	21
	9.2.5	Checking the Software Version	21
	9.2.6	Origin Search Mode	21
	9.2.7	Initializing Parameter Settings	21
	9.2.8	Manual Zero Adjustment and Gain Adjustment of Analog Monitor Output.	21
		Manual Zero Adjustment of Analog Monitor Output	
		Manual Gain Adjustment of Analog Monitor Output	22
	9.2.9	Adjusting the Motor Current Detection Offset	22
		Automatic Adjustment of the Motor Current Detection Offset	22
		Manually Adjusting the Motor Current Detection Offset	22
	9.2.10	Write Protection Setting	22
	9.2.11	Clearing the Option Unit Detection Alarm	
N A11	Ratings	and Specifications	2
		XtraDrive Ratings and Specifications	22
		XtraDrive Ratings and Specifications (continued)	22
		XtraDrive Ratings and Specifications (continued)	23
		XtraDrive Ratings and Specifications (continued)	23
10.2	Single-I	Phase 100V XtraDrive and Motor Combinations	
10.3	Single-I	Phase 200V XtraDrive and Motor Combinations	23
10.4	Three-P	hase 200V XtraDrive and Motor Combinations	23
10.5	Three-P	Phase 400V XtraDrive and Motor Combinations	23
10.5	Three-P	Phase 400V (continued)	23
10.6	Base-M	ounted Dimensional Drawings	23
	10.6.1	XD-P3 to -01 (Single-phase 100V, 30 to 100W)	23
	10	XD-P3 to -02 (Single-phase 200V, 30 to 200W)	23
	10.6.2	XD-02 (Single-phase 100V, 200W)	23
	4.0	XD-04 (Single-phase 200V, 400W)	23
	10.6.3	XD-08 (Single-phase 200V, 0.75kW)	23
		XD-10 (Three-phase 200V, 1.0kW)	23
	10.6.4	XD-05, 10, 15 (Three-phase 400V, 0.5 to 1.5kW)	24
	10.6.5	XD-20, -30 (Three-phase 200V, 400V, 2.0 and 3.0kW)	24
		XD-15 (Single-phase 200V, 1.5kW)	24
	10.6.6	XD-50 (Three-phase 400V, 50kW)	24
10.7	Rack-M	lounted Dimensional Drawings	24
	10.7.1	XD-P3 to -01 (Single-phase 100V, 30 to 100W)	24
		XD-P3 to -02 (Single-phase 200V, 30 to 200W)	24
	10.7.2	XD-02 (Single-phase 100V, 200W	24
		XD-04 (Single-phase 200V, 400W)	24
	10.7.3	XD-08 (Single-phase 200V, 0.75kW)	24
		XD-10 (Three-phase 200V, 1.0kW)	24
	10.7.4	XD-05, 10, 15 (Three-phase 400V, 0.5 to 1.5kW)	24
	1075	XD_2O_3O (Three-phase 200V 400V 2.0 and 3.0kW)	24
	10.7.5	AD 20, 50 (Three phase 2007, 4007, 2.0 and 5.0k (7)	
	10.7.5	XD-15 (Single-phase 200V, 1.5kW)	24

APPENDIXES

Appendix A	INSPECTION, MAINTENANCE AND TROUBLESHOOTING					
	A 1	XtraD	rive Inspection and Maintenance	A3		
		A 1.1	Servo motor Inspection	A3		
		A 1.2	Servo Amplifier Inspection	A4		
			Part Replacement Schedule	A4		
		A 1.3	Replacing the Battery for the Absolute Encoder	A5		
			Battery Replacement Procedure	A5		
	A 2	Troubl	e Shooting	A5		
		A 2.1	Trouble Shooting Problems with Alarm Displays	A5		
			A. 00:Multi-Turn Data Error	A6		
			A. 02:Parameter Breakdown	A7		
			A. 03: Main Circuit Detection	A7		
			A. 04: Parameter Setting Error	A7		
			A. 05: Servo Motor and Amplifier Combination Error	A8		
			A. 10: Overcurrent or Heat Sink Overheated	A8		
			A. 30: Regenerative Error	A9		
			A. 31: Overflow	A9		
			A. 32: Regenerative Overload	A10		
			A. 40: Main Circuit DC Voltage Error Detected: Overvoltage	A11		
			A. 41: Main Circuit DC Voltage Error Detected: Undervoltage	A11		
			A. 51: Overspeed	A12		
			A. 71: Overload: High Load	A12		
			A. 72: Overload: Low Load	A12		
			Overload Characteristics	A13		
			A. 73: Dynamic Brake Overload	A14		
			A. 74: Overload of Surge Current Limit Resistor	A14		
			A. 7A: Heat Sink Overheated	A15		
			A. 81: Absolute Encoder Backup Power Supply Error	A15		
			A. 80: Position Error	A16		
			A. 81: Absolute Encoder Backup Power Supply Error	A17		
			A. 82: Encoder Checksum Error	AI7		
			A. 83: Absolute Encoder Battery Error	A18		
			A. 84: Absolute Encoder Data Error	A19		
			A. 85: Absolute Encoder Overspeed			
			A. 86: Encoder Overheated			
			A. 99: Alarm Reset (Not Alarm)	A20		
			A. b1: Reference Speed Input Read Error	A21		
			A. 61: Some Due Aview	A21		
			A. C1: Servo Kun Away	A22		
			A. C2: Commutation (Phase Finding) Error	A23		
			A. C4: DCDhase Disconnection of DC Signal Line	A23		
			A. C4: PCPHase Disconnection of PO Signal Line.	A24		
			A. Co: Encoder Creat Error and Multi-Turn Limit Setting Error.	A23		
			A. CA: Encoder Deremeter Error	A20		
			A. Ch: Encoder Fahaheek Error	A20		
			A. CC: Multi-Turn Limit Disggrammant Alarm	/ ۲۲ ۲۵ ۸		
			A. CC. Multi- Iulii Lillin Disagreentein Alarin.	/ AL ۱۹۸۸ ۸ ۱۹۷		
			A. 40. FOSHOIL EITOF FUISE OVERHOW	A20 ۸		
			A. E1. Dower Line Open Phase	A29		
			CPEOO: Digital Operator Transmission Error 1	۳29 م ۸ 2 ۸		
			CPF01: Digital Operator Transmission Error 2	∆20		
			A Normal Operation	Δ31		
			11 Hormun Operation			

	A 2.2	2 Trouble Shooting Problems with No Alarm Display	
	A 2.	.3 Alarm Display Table	A34
	A 2.	.4 Warning Displays	A36
APPENDIX B	Spec	CIAL WIRING	B1
	B 1	Wiring Precautions	B3
		MCCB or Fuse According to Power Capacity	B5
	B 2	Wiring for Noise Control	B6
		Wiring Example	B6
		Correct Grounding	B6
		Using Noise Filters	B7
		Installation and Wiring a Noise Filter	B8
	B 3	Using More Than One XtraDrive	B10
	B 4	Extending Encoder Cables	B11
		Preparing 50m (164.0 ft) Encoder Cables	B11
	B 5	400 V Power Supply Voltage	B12
		Single Phase Power supply Connection Example	B13
	B 6	Reactor for Harmonic Suppression	B14
		Connecting a DC Reactor	B14
		DC Reactor Specifications.	B14
Appendix C	LIST	OF PARAMETERS	C1
	C 1	Working with the XtraDrive Operator Panel	C3
		Basic Mode Selection	C3
		Resetting Servo Alarms Using the Operator Panel	C4
		Operation in Parameter Setting Mode	C4
		Changing Parameter Value Settings	C4
	C 2	Parameters	C5
	C 3	Switches	C10
	C 4	Input Signal Selections	C14
		C 4.1 Home Switches	C15
		C 4.2 Extended Input Signal Selection Switches	C15
	C 5	Output Signal Selections	C16
		C 5.1 Extended Output Signal Selections	C16
	C 6	Auxiliary Functions	C17
	C 7	Monitor Modes	C17
Appendix D	Hos	T CONTROLLER CONNECTION EXAMPLES	D1
	D 1	Connecting the GL-Series MC20 Motion Module	D3
	D 2	Connecting the CP-9200SH Servo Controller Module (SVA)	D4
	D 3	Connecting the GL-Series B2813 Positioning Module	D5
	D 4	Connecting OMRON's C500-NC222 Position Control Unit	D6
	D 5	Connecting OMRON's C500-NC112 Position Control Unit	D7
	D 6	Connecting MITSUBISHI's AD72 Positioning Unit	D8
	D 7	Connecting MITSUBISHI's AD75 Positioning Unit	D9

SPEC	IFICATIONS FOR PERIPHERAL DEVICES	E1
E 1	External Regenerative Resistors	E3
	Product Name Configurations	E3
	Specifications	E4
	Dimensional Drawings	E4
E 2	DC Reactors for Power Supplies Designed for Minimum Harmonics	E5
	Dimensional Drawings	E6
E 3	Brake Power Supplies	E7
	Dimensional Drawings	
	Specifications	
	Internal Circuit	
E 4	Surge Suppressor	
E 5	Magnetic Contactor	
E 6	Variable Resistor for Speed Setting	
	Connection to an External Power Supply	
E 7	CN1 I/O Signal Connector	
E 8	Connecting Pulse A/B Encoder without C Pulse (Index Pulse)	E9
E 9	Absolute Encoder Battery	E10
	Battery Installed at the Absolute Encoder Cable End	E10
	Battery Installed at the XtraDrive End (CN1 Connector)	E10
E 10	Cables for Connecting PC to XtraDrive	E11
	E 10.1 RS-232 Communication Cable	E11
	E 10.2 Cable with RS-232 to RS-422 Active Adapter	E13
E 11	Connecting Regenerative Resistors	E14
	Calculating the Regenerative Power Capacity	E14
E 12	Connecting Yaskawa Option Board	E15
	E 12.1 Attaching the Option Board	E15
	E 12.2 Detaching the Option Board	E15
DEFA	ULT PARAMETER VALUES	F1
	 SPEC E 1 E 2 E 3 E 4 E 5 E 6 E 7 E 8 E 9 E 10 E 11 E 12 DEFA 	SPECIFICATIONS FOR PERIPHERAL DEVICES. E 1 E 1 E 1 E 2 DCReactors for Power Supplies Designed for Minimum Harmonics Dimensional Drawings E 3 Brake Power Supplies Dimensional Drawings E 4 Surge Suppressor E 5 Magnetic Contactor E 6 Variable Resistor for Speed Setting Connection to an External Power Supply E 7 CN1 I/O Signal Connector E 8 Connecting Pulse A/B Encoder without C Pulse (Index Pulse) E 9 Absolute Encoder Battery Battery Installed at the Absolute Encoder Cable End Battery Installed at the XtraDrive End (CN1 Connector) E 10 Cables for Connecting PC to XtraDrive. E 10.1 RS-232 Communication Cable E 10.2 Cable with RS-232 to RS-422 Active Adapter E 11 Connecting Regenerative Resistors Calculating the Regenerative Power Capacity E 12.2 Detaching the Option Board E 12.2 Detaching the Option Board </td

USING THIS MANUAL

Intended Audience

This manual is intended for the following users.

- Those designing XtraDrive XD- Series servo drive systems.
- Those installing or wiring XtraDrive XD- Series servo drives.
- Those performing trial operation or adjustments of XtraDrive XD- Series servodrives.
- Those maintaining or inspecting XtraDrive XD- series servo drives.

Description of Technical Terms

In this manual, the following terms are defined as follows:

- Servo Motor = SGMAH/SGMPH/SGMGH/SGMSH or other compatible servo motor.
- **Servo Amplifier** = XtraDrive Series XD- \Box servo amplifier.
- Servo Drive = A set including a servo motor and servo amplifier.
- **Servo System** = A servo control system that includes the combination of a servodrive with a host computer and peripheral devices.

Indication of Inverted Signals

In this manual, the names of inverted signals (ones that are valid when low) are written with a forward slash (/) before the signal name, as shown in the following equations:

- $\overline{S-ON} = /S-ON$
- $\overline{P-CON} = /P-CON$

INTRODUCTION

The XtraDrive is part of a Computer-XtraDrive-Servo motor system used to drive and control equipment in a variety of applications.

XtraDrive provides the electrical connections, power, and control signals for the servo motor. XtraWare, running on a WindowsTM system is used to create the control programming and set parameters needed by the XtraDrive. Communications between XtraWare and XtraDrive take place through an RS-232C or RS-422A serial port.

The purpose of this guide is to:

- Help you understand the XtraDrive controller and its use. This guide will cover the basics of providing power, safety information, identifying components and their use, and connecting the XtraDrive to a servo motor and computer. It is not intended to specifically address a particular application.
- It will also assist you in performing an initial setup of the XtraDrive hardware and XtraWare software. The XtraWare software provides the user interface and control of the XtraDrive hardware and servo motors, both hardware and software must be installed, connected, and operating to create a working system. Steps in the guide will show you how to:
 - Install the software
 - Power the XtraDrive
 - Wire it to the servo motor
 - Connect it to the computer

Both hardware and software must be installed, connected, and operating to create a working system.

Introduction

purpose continued

- Use the XtraWare software to set up communications and operate the motor using the "JOG" function.
- **NOTE:** The purpose of this process is to get to a point where a computer with XtraWare / XtraDrive / Servo motor combination can carry out some basic functions.

The contents of this guide, together with the XtraWare User Guide, will provide you with the information needed to successfully use the XtraDrive in motion control applications.

This guide describes the XtraDrive XD- SERIES AC SERVO DRIVER controlling Yaskawa Σ -II series or any similar AC servo motor.

The product conforms to the following standards:

- EN61000-6-2: 1999
- EN55011: 1998, Group 1 Class A

However, because this product is a built-in type, reconfirmation of the above standards is required after being installed in the final product. Upon receipt of the product and prior to installing the product, read these instructions carefully and retain for future reference. This will enable you to properly use the XtraDrive Series AC Servo Driver and carry out periodic inspection, maintenance, etc.

Related documents:

Title	CATALOG NO.
XtraDrive Series Servo System User's Manual	8U0108
AC Servo Motor Instructions for Yaskawa (for Σ -II) Σ -II series motors or documentation for Manufacturer's motor other compatible motors specification	TOE-C231-2
XtraWare User's Manual	8U0109

This guide and other related documents can be downloaded from our web site: International - www.yetmotion.com

U.S. - www.yet-motion.com

NOTE: YET is not responsible for accidents or damages resulting from product modifications made by the user.

Note:

For the purposes of this example, the motor should be mounted on a support base and **NOT** be connected to any other equipment. INSTALLATION **T**

SAFETY PRECAUTIONS

In this guide, safety precautions are classified as WARNING or CAUTION. It is extremely important that you pay close attention to these precautions.

The following symbols are used:

CAUTION

Indicates a potentially hazardous situation, which, if not avoided, could result in death or serious personal injury.

Indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate personal injury and/or damage to the equipment. In some instances, items described in CAUTION could also result in a serious accident.

NOTES FOR SAFE OPERATION

Read the following safety precautions thoroughly before installation, operation, maintenance or inspection of the XtraDrive Servo Drives.

WARNING	• Never touch any rotating motor parts while the motor is running. Failure to observe this warning may result in injury.
	• Before starting operation with a machine connected, make sure that
	an emergency stop can be applied at any time.
	Failure to observe this warning may result in injury.
	• Never touch the inside of the XtraDrive.
	Failure to observe this warning may result in electric shock.
	• Do not remove the terminal cover while the power is ON.
	Failure to observe this warning may result in electric shock.
	• Do not touch terminals for five minutes after the power is turned OFF.
	Residual voltage may cause electric shock.

1.2

1.1

•	
WARNING	 Do not touch terminals for five minutes after voltage resistance test. <i>Residual voltage may cause electric shock.</i> Follow the procedures and instructions for trial operation precisely as noted in the relevant User's Manual. <i>Malfunctions that occur after the servo motor is connected to the equipment not only damage the equipment, but may also cause an accident resulting in death or injury.</i> The multi-turn limit value must be changed only for special applications. <i>Changing it inappropriately or unintentionally can be dangerous.</i> Do not remove the terminal cover, cables, connectors, or optional items while the power is ON. <i>Failure to observe this warning may result in electric shock.</i> Connect the ground terminal to connections meeting electrical engineering electrical codes (ground resistance: 100 Ω or less). <i>Improper grounding may result in electric shock or fire.</i> Only authorized personnel must perform installation, disassembly, or repair. <i>Failure to observe this warning may result in electric shock or injury.</i> Do not damage, press and exert excessive force or place heavy objects on the cables. <i>Failure to observe this warning may result in electric shock, stopping operation of the product, or burning.</i> Do not modify the product. <i>Failure to observe this warning may result in injury or damage to the product.</i> Provide an appropriate stopping device on the machine side to ensure safety. The holding brake on Servo Motor is not intended to stop rotation of shaft. <i>Failure to observe this warning may result in injury.</i> Do not come close to the machine immediately after resetting momentary
	• Do not come close to the machine immediately after resetting momentary power loss to avoid an unexpected restart. Take appropriate measures to ensure safety against an unexpected restart. <i>Failure to observe this warning may result in injury.</i>

Checking on Delivery

A CAUTION	• Always use the Servo Motor and XtraDrive in one of the specified combinations. See Chapter 1.7, "Type Designation". Failure to observe this caution so may result in fire or malfunction.
Storag	ge and Transportation
CAUTION	 Do not store or install the product in the following places. Locations subject to direct sunlight. Locations subject to temperatures outside the range specified in the storage/ installation temperature conditions. Locations subject to humidity outside the range specified in the storage/ installation humidity conditions. Locations subject to condensation as the result of extreme changes in temperature. Locations subject to corrosive or flammable gases
Install	 Locations subject to corrosive of naminable gases. Locations subject to dust, salts or iron dust. Locations subject to exposure to water, oil or chemicals. Locations subject to shock or vibration. <i>Failure to observe this caution may result in fire, electric shock, or</i> <i>damage to the product.</i> Do not hold the product by the cables or motor shaft while transporting it. <i>Failure to observe this caution may result in injury or malfunction.</i> Do not place any load exceeding the limit specified on the packing box. <i>Failure to observe this caution may result in injury or malfunction.</i> Do not hold the product by the eyebolt of motor while transporting it. <i>Failure to observe this caution may result in injury or malfunction.</i> Mo not hold the product by the eyebolt of motor while transporting it. <i>Failure to observe this caution may result in injury or malfunction.</i>
CAUTION	 Never use the products in an environment subject to water, corrosive gasses, inflammable gasses, or combustibles. <i>Failure to observe this caution may result in electric shock or fire.</i> Do not step on or place a heavy object on the product. <i>Failure to observe this caution may result in injury.</i> Do not cover the inlet or outlet ports and prevent any foreign objects from entering the product. <i>Failure to observe this caution may cause internal elements to deteriorate resulting in malfunction or fire.</i> Be sure to install the product in the correct direction. <i>Failure to observe this caution may result in malfunction.</i> Provide the specified clearances between the XtraDrive and the control panel or with other devices. <i>See Chapter 1.12, "Multiple XtraDrive Installation". Failure to observe this caution may result in fire or malfunction.</i>

Wiring (continued)

AUTION	 Take appropriate and sufficient countermeasures for each when installing systems in the following locations. Locations subject to static electricity or other forms of noise. Locations subject to strong electromagnetic fields and magnetic fields. Locations subject to possible exposure to radioactivity. Locations close to power supplies. <i>Failure to observe this caution may result in damage to the product.</i> Do not reverse the polarity of the battery when connecting it. <i>Failure to observe this caution may damage the battery or cause it to explode.</i>
Opera	ation
CAUTION	 Conduct trial operation on the servo motor alone with the motor shaft disconnected from machine to avoid any unexpected accidents. Failure to observe this caution may result in injury. Before starting operation with a machine connected, change the settings to match the parameters of the machine. Starting operation without matching the proper settings may cause the machine to run out of control or malfunction. Forward run prohibited (P-OT) and reverse run prohibited (N-OT) signals are not effective during zero point search mode using parameter Fn003. See Chapters 7.1.2 and 9.2.6 on P-OT. N-OT When using the servo motor for a vertical axis, install the safety devices to prevent work pieces to fall off due to occurrence of alarm or overtravel. Set the servo motor so that it will stop in the zero clamp state at occurrence of overtravel. Failure to observe this caution may cause work pieces to fall off due to overtravel. When not using online auto tuning set to the correct moment of inertia ratio. Setting to an incorrect moment of inertia ratio may cause vibration. Do not touch the XtraDrive's heatsink, regenerative resistor, or servo motor while power is ON or soon after the power is turned OFF. Failure to observe this caution may result in injury due to unstable operation. Do not make any extreme adjustments or setting changes of parameters. Failure to observe this caution may result in injury. Do not use the serve this caution may result in injury. Do not use the serve this caution may result in injury. Do not use the serve this caution may result in malfunction. The serve motor's brake should only be engaged when the shaft is not turning. The brake is intended to function as a holding brake not a dynamic brake. Failure to observe this caution may result in malfunction.

Maintenance and Inspection

A CAUTION	 Do not disassemble the XtraDrive. <i>Failure to observe this caution may result in electric shock or injury.</i> Do not attempt to change wiring while the power is ON. <i>Failure to observe this caution may result in electric shock or injury.</i> When replacing the XtraDrive, resume operation only after transferring the previous XtraDrive parameters to the new XtraDrive. <i>Failure to observe this caution may result in damage to the product.</i>
Diama	

Disposal

• When disposing of the products, treat them as ordinary industrial waste.

WARNING LABEL

The following illustration shows an example of the XtraDrive's warning label.

The mounting position of the label differs depending on the model and capacity of the XtraDrive.

PARTS

The part names of the XtraDrive series AC Servo Driver are shown in the following diagram:

CHECKING PRODUCTS ON DELIVERY

The following procedure is used to check XD- series products upon delivery.

Check Item	Comments
Are the delivered products the ones you ordered?	Check the model numbers marked on the nameplates of the XtraDrive.
Is there any visible damage?	Check the overall appearance and check for damage or scratches that may have occurred during transportation.
Are there any loose screws?	Tighten any loose screws with a screwdriver.

If any of the above items are faulty or incorrect, contact your local sales representative or the dealer from whom you purchased the product (s).

1.6

APPEARANCE AND NAMEPLATE

Type Designation

A quad B encoders, no halls)

0A: A quad B encoder, w/ 5v halls

OUTPUT CAPACITY CODE	R ECOMMENDED APPLICABLE Servo motor Power (kW)
P3	0.03
P5	0.05
01	0.10
02	0.20
04	0.40
05	0.50
08	0.75
10	1.0
15	1.5
20	2.0
30	3.0
50	5.0

NOTE: XtraDrive amplifiers should be matched to appropriate motor power. However it is possible to drive a motor one level higher or lower than drive power rating. For example, a drive with a output capacity code of "08" is recommended for 0.75kW servo motor but can also be used with a 0.5 and 1.0kW servo motor.

IMPORTANT: The performance of the motor drive system will be limited by the device with the lowest power rating.

1.8 INSTALLATION

XtraDrive series servo driver is a base-mount type servo controller. YET recommends that you follow installation instructions carefully to avoid premature failure.

1.9 OPERATING CONDITIONS

Ensure the following operating conditions for XtraDrive use:

Installation category (Overvoltage category)*: II Pollution degree *: 2 Protection class *: 1X Maximum altitude: 1000m

* Conforming to the following standards: EN55011: 1198 Group 1 Class A EN61000-6-2: 1999

1.10

INSTALLATION SITES

NOTES ON INSTALLATION SITUATION • Design the control panel size, unit layout, and cooling method so that temperature around the periphery of the XtraDrive does not exceeds 55°C. When installed inside a control panel • When installing multiple XtraDrives side by side in a control panel, install cooling fans and provide sufficient space around each XtraDrive to allow cooling by fan and natural convection Suppress radiated heat from the heating unit and a temperature rise caused by convection so that the When installed near temperature around the periphery of the XtraDrive a heating unit does not exceeds 55°C. Install a vibration isolator underneath the When installed near XtraDrive to prevent it from receiving vibration. a vibration source Corrosive gasses do not immediately affect the When installed in a XtraDrive but will eventually cause contactorcorrosive gasses area related devices to malfunction. Take appropriate action to protect against corrosive gasses. • Avoid installation in a hot and humid place or where excessive dust or iron powder is present in the air. Others • Be sure there is no condensation or freezing. • Keep the ambient temperature 45°C or less to ensure long-term reliability.

For installation sites, use proper care with the following notes.

ORIENTATION

Install the XtraDrive perpendicular to the wall and orientate it as shown in the figure below.

Firmly secure the XtraDrive through two or four mounting holes (depending on the XtraDrive capacity).

MULTIPLE XTRADRIVE INSTALLATION

When installing multiple XtraDrives side by side in a control panel, observe the following:

NOTE: Distance measurement applies to all models, not just models shown.

Where Mounted Side by Side

When installing XtraDrives side by side, provide at least 10 mm (0.4 in) space between them and at least 50 mm (2 in) space above and below them as shown in the figure above. Install cooling fans above the XtraDrives to prevent the temperature around each XtraDrive from increasing excessively and also to maintain the temperature inside the control panel evenly.

Environment Inside Control Box

Maintain the following conditions inside the control box: Ambient temperature for XtraDrive: 0°C to 55°C Humidity: 90% RH or less, not condensing. Vibration: 4.9 m/s² No Freezing Ambient temperature to ensure long-term reliability: 45°C or less.

WIRING MAIN CIRCUIT TERMINAL BLOCKS

Observe the following precautions when wiring main circuit terminal blocks.

CAUTION	• Remove the terminal block from the servo amplifier prior to wiring. The terminal block can be pulled from the XtraDrive. Grasp the terminal block by the sides and gently pull it out until it comes free of the drive (you may have to rock it slightly to free it - NO TOOLS should be used). When re-inserting it press the block until it clicks in place.
	• Insert only one wire per terminal on the terminal block.

- Make sure that the core wire is not electrically shorted to adjacent core wires.
- Reconnect any wires that were accidentally pulled out.

Connection Procedure

• Strip the end of the wire, leaving the ends twisted together.

- Open the wire insert opening of the terminal block (plug) with a tool using either of the two procedures shown in Fig. A and Fig. B.
- Fig. A: Use the provided lever to open the wire insert opening.
- Fig. B: Using a commercially available 1/8in (3.0 to 3.5mm) slotted screwdriver, press down firmly on the screwdriver insert opening to release the wire insert slot.

Figs A and B: Insert the wire end into the opening and then clamp it tightly by releasing either the lever or the screwdriver.

WIRING

Molded-Case Circuit Breaker and Fuse Capacity

Main circuit Power Supply	XtraDrive model		Power Supply Capacity	Current Capacity of the Molded-case Circuit Breaker and the Fuse (A _{rms}) ^{*1, *2}		Inrush current	
	Capacity (kW)	XD-	per XtraDrive (kVA)	Main circuit Power Supply	Control circuit Power Supply	Main circuit Power Supply	Control circuit Power Supply
Circela	0.03	P3-L*	0.15				
Single-	0.05	P5-L*	0.25	4	0.26	224	30A
100V	0.10	01-L*	0.40		0.20	3ZA	
100 v	0.20	02-L*	0.60	6			
	0.03	P3-M*	0.20		4 0.13 8		60A
Single-	0.05	P5-M*	0.25	4		63A	
phase	0.10	01-M*	0.40				
200V	0.20	02-M*	0.75				
	0.40	04-M*	1.2	8			
Single-	0.75	08-M*	2.1	11	0.12*4	130A	66A
220V	1.50	15-M*	4.0	19	0.15		
Three-	2.0	20-M*	4.3	13	0.13 ^{*4}	63A	60A
200V	3.0	30-M*	5.9	17			
	0.45	05-T*	1.1	1.6		10A .	
Three-	1.0	10-T*	2.3	3.4			
	1.5	15-T*	3.2	4.6	0.7*4		*3
100V	2.0	20-T*	4.9	7.1	0.7	20 4	
4000	3.0	30-T*	6.7	9.7		20A	
	5.0	50-T*	10.3	14.9		78A	

* - Option Board Connector (S – with no connector, N – with connector).

*1. Nominal value at rated load. The specified derating is required to select an appropriate fuse capacity.

*2. Cutoff characteristics (25°C): 300% five seconds min. and inrush current of 20ms.

*3. A preventive circuit for inrush current is not built in the 24VDC control power supply. Customer must design the protective circuit.

*4. Make sure the current capacity is accurate. For XtraDrive with cooling fan built-in, an inrush current flows; 200% of the current capacity in the table above for two seconds, when turning ON the control circuit.

Main Circuit Wiring

XD- series servo drives are suitable under the following conditions:

- With 100V class: Less than 5000 Arms, 120V maximum.
- With 200V class: Less than 5000 Arms, 240V maximum.
- With 400V class: Less than 5000 Arms, 480V maximum.
- XD- series servo drives must be used with UL-listed fuses or circuit breakers, in accordance with the National Electrical Code (NEC).
- Use 75°C heat-resistant copper wires or an equivalent.

Main Circuit Wire Size

• Cable Types

Cable Types		Allowable Conductor Temperature °C (°F)	
Symbol Name			
PVC	Normal vinyl cable	-	
IV	600V vinyl cable	60 (140)	
HIV	Temperature-resistant vinyl cable	75 (167)	

- Wire sizes are selected for three cables per bundle at 40°C (104°F) ambient temperature with the rated current.
- Use cable with a minimum withstand voltage of 600V for main circuits.
- If cables are bundled in PVC or metal ducts, consider the reduction ratio of the allowable current.
- Use heat-resistant cables under high ambient or panel temperatures where normal vinyl cables will rapidly deteriorate.
- Use cables within the allowable moment of inertia.
- Do not use cables under continuous regenerative state. The following table shows the wire size and allowable current for three cables. Use a cable whose specifications meet or are less than the values in the table.
- 600V Heat-resistant Vinyl Cables (HIV)

Grounding System

.

Ground Terminal	
-----------------	--

Main		Model	Gr	ound Termir	
Circuit Power Supply	Capacity (kW)	XD-	Wire Size (mm ²)	Terminal Screw Size	
0: 1	0.03	P3-L*			
Single-	0.05	P5-L*	HIV2.0 or	M4	
100V	0.1	01-L*	more	1014	
100 (0.2	02-L*			
	0.03	P3-M*			
Single-	0.05	P5-M*			
phase	0.1	01-M*	more	M4	
200V	0.2	02-M*			
	0.4	04-M*	1		
Single- phase 220V	0.75	08-M*	HIV2.0 or	M4	
	1.5	15-M*	more	1/14	
Three-	2.0	20-M*	HIV2.0 or	M4	
200V	3.0	30-M*	more		
	0.5	05-T*			
Three- phase 400V	1.0	10-T*]		
	1.5	15-T*	HIV2.0 or	M4	
	2.0	20-T*	more		
	3.0	30-T*			
	5.0	50-T*		M5	

Ground the XtraDrive grounding terminal \oplus (grounding resistance: 100 Ω or less), in conformance with local electrical codes.

Be sure to connect the grounding wire of the servo motor to \oplus of the XtraDrive.

Never share the grounding cable or main grounding point with welding equipment, power equipment or other high-voltage devices.

Separate the grounding cable from wiring of high-voltage equipment.

Make the grounding wire as short as possible.

If two or more XtraDrives are used, ground them as shown in (a) below.

Avoid methods (b) and (c).

1.15 AC POWER SOURCE SUPPLY

Use the XtraDrive AC power source supply according to product ratings. See the following table for details.

Power	XtraDrive	Motor Output	Specifications	Connection Terminals
Single- Phase 100V	XD-P3-L to 02-L	30 W to 200 W	1-phase 100 VAC to 120 VAC (+10% to -15%), 50/60 Hz	L1, L2 (Main) LIC, L2C (Control)
Single	XD-P3-M□ to 04-M□	30 W to 400 W	1-phase 200 VAC to 230 VAC (+10% to -15%), 50/60 Hz	L1, L2 (Main) LIC, L2C (Control)
Single- Phase 200V	XD-08-M⊡ and	750 W and	1-phase 220 VAC to 230 VAC* (+10% to -15%), 50/60 Hz	L1, L3 (Main)
	XD-15-M□	1.5 kW	1-phase 200 VAC to 230 VAC (+10% to -15%), 50/60 Hz	L1C, L2C (Control)
Three- Phase 200V	XD-10-M□ to	1.0. 2.0 and	3-phase 220 VAC to 230 VAC (+10% to -15%), 50/60 Hz	L1, L2, L3 (Main)
	XD-30-M□	3.0 kW	1-phase 200 VAC to 230 VAC (+10% to -15%), 50/60 Hz	L1C, L2C (Control)
Three- Phase 400V	XD-05-T□ to	0.5, 1.0, 1.5,	3-phase 380 VAC to 480 VAC (+10% to -15%), 50/60 Hz	L1, L2, L3 (Main)
	XD-50-T□	2.0, 3.0 and 5.0 kW	DC power supply +24 V (±15%) (not provided by YET)	24V, 0V (Control)

Note: When the input power is less than 15% of the rated value then alarm A41, indicating voltage shortage, may occur when accelerating to max speed with max torque of servo motor.

1.16 DC POWER SOURCE SUPPLY

3-Phase 400V XtraDrive models require 24VDC for its control circuit. The user must provide a 24VDC \pm 15% power supply with a current capacity of at least 1 Ampere. This power supply must also be able to withstand a surge of up to 3Amperes for 50msec. It should be connected to the terminals marked 24V and 0V on the XtraDrive.

WARNING

Do not connect AC voltage to these terminals.

Doing so may cause permanent damage to the amplifier.

1.17 Noise Control

If the signal line is affected by noise, malfunction may result. Separate power cables from control cables. Make the signal line as short as possible and use twisted-pair wires. Never use a line filter (for power input) for servo motor circuit. If peripheral devices malfunction due to the noise from XtraDrive, insert a line filter (for output, type LF-310KA, made by Tokin Corp.) between the servo motor and XtraDrive.

Signal Line Wire Sizes

The following table shows appropriate cables for CN1 and CN2 XtraDrive connectors.

Wire sizes were selected for three cables per bundle at 40° C ambient temperature with the rated current.

Connector Name and Signal		Item	Specification
Control I/O Signal Connector	CN1	Cable	Twisted-pair or shielded twisted-pair wire.
		Applicable	AWG24 (0.2 mm ²), AWG26 (0.12 mm ²),
		wire	AWG28 (0.08 mm ²), AWG30 (0.05 mm ²).
		Finished cable	Ø16.0 mm (Ø 0.63 in) MAX.
		dimension	
Encoder Signal Connector	CN2	Cable	Shielded twisted-pair wire.
		Applicable wire	AWG24 (0.2 mm ²), AWG26 (0.12 mm ²), AWG28 (0.08 mm ²), AWG30 (0.05 mm ²). Use AWG22 (0.33 mm ²) for encoder power supply and AWG26 (0.12 mm ²) for other signals. These conditions permit wiring distances up to 20 m (65.6 ft).
		Finished cable dimension	Ø6.8 mm (Ø 0.27 in) MAX.

FUNCTIONING SYSTEM

2.1

A functioning system consists of:

- a computer system with the XtraWare software, providing the human interface, control and programming parameters and the ability to download control programs to the XtraDrive,
- the XtraDrive providing power and control to the motor, and,
- the motor itself.

Computer System Requirements

For optimum performance, XtraWare requires:

- Computer: Pentium 166 MHz (Pentium II 350 MHz recommended)
- At least 32 MB of RAM (64 MB recommended)
- A hard drive with at least 100 MB of free disk space
- Operating System Supported:
 - o Windows™ 95 OSR2 or later (IE4.01 service Pack 2 or later)
 - o Windows 98
 - o Windows NT4.0 Service Pack 3 or later (IE4.01 service Pack 2 or later)
 - o Windows 2000
 - o Windows ME
 - o Windows XP
- Super VGA or better graphics display, minimum 256 colors (65536 colors recommended
- One or more RS-232C or RS-422-A I/F ports (Note: customers with computers that do not have a serial port can substitute a USB-to-serial converter or a PC Card expansion interface (PCMCIA) with a serial port. Check vendors system requirements for details, not all USB-to-serial converters have had satisfactory performance.) *Appendix E, page E12* of the XtraDrive User Guide contains a description of the cable and pin assignments.
- CD-ROM drive (for installation only)

XtraWare Software Installation

The XtraWare software is provided on a CD-ROM that comes with the XtraDrive. If you need a copy visit the web site (www.yet-motion.com) and login to the download section. You may also contact your sales representative.

Before proceeding with the installation procedure, close any applications that are open. During the procedure, XtraWare and its related files are installed on your hard disk. If a previous version of XtraWare is already installed, the existing program is overwritten. All files created with previous versions of the software should be backed up.

- 1. Insert the CD-ROM into the CD-ROM drive.
- 2. If the procedure does not start automatically (i.e., autoplay is not enabled) either:
 - o Click Start>Run and type "D:\Install\SETUP"
 - (where D: is your CD-ROM drive), or
 - o Using Windows Explorer, load the CD-ROM contents, and double-click **D:\Install\SETUP**

The installation screen is displayed, and the installation procedure with a message welcoming you to XtraWare.
- 3. Click **Next** to continue.
- 4. Follow the on-screen instructions to choose a destination folder for the XtraWare files.
- 5. Click **Next** to continue.
- 6. Select the program group to create the XtraWare icon. "C:\Program Files\YET\XtraWare" is the default setting.
- 7. After selecting the program group or folder, click Next to continue.

The PC files are copied from the CD-ROM. During the procedure, the installation progress is displayed.

NOTE: If new versions of the PC support files are needed to install XtraWare, a window will appear asking whether to overwrite the current version or to cancel the installation. XtraWare may not run correctly if the new version of the support files is not installed.

The XtraDrive System Components

The XtraDrive System Configurations

The XtraDrive provides power and control signals to the servo motor(s). The following tables give a listing of the configurations available and a breakdown of the model numbers.

MAIN CIRCUIT POWER SUPPLY	MAXIMUM APPLICABLE SERVOMOTOR CAPACITY (Kw)	SERVO AMPLIFIER MODEL	CONT. CURRENT (AMPS)	PEAK CURRENT (AMPS)
Single- Phase 100V	0.03 0.05 0.10 0.20	XD-P3 XD-P5 XD-01 XD-02	0.66 0.95 2.4 3.0	2.0 2.9 7.2 9.0
Single- Phase 200V	0.03 0.05 0.10 0.20 0.40 0.75 1.5	XD-P3 XD-P5 XD-01 XD-02 XD-04 XD-08 XD-15	0.4 0.6 0.9 2.1 2.8 5.7 7.5	1.3 2.0 2.8 6.5 8.5 13.9 23.0
*Three- Phase 200V	1.0 2.0 3.0	XD-10 XD-20 XD-30	7.6 18.5 24.8	17.0 42.0 56.0
Three- Phase 400v	0.45 1.0 1.5 2.0 3.0 5.0	XD-05 XD-10 XD-15 XD-20 XD-30 XD-50	1.9 3.5 5.4 8.4 11.9 16.5	5.5 8.5 14.0 20.0 28.0 40.5

Servo Amplifier Ratings

*Three phase 200V not available with Profibus configuration.

XtraDrive Model Number Designations

CONNECTIONS TO THE XTRADRIVE

In a basic system there are two sets of cables: Power to the XtraDrive, and, Motor Power, Connections and Feedback.

XtraDrive Cables

The power cable for the motor is attached to the unit and ends with four wires exposed and labeled (U, V, W, and Ground in the power cable supplied by YET). The motor feedback connector ends in a grey modular connector which requires a second cable to complete the hookup to the XtraDrive.

Communication Cables

(see section E 10, page E11 for cable construction details) As noted above, a serial port connection between a PC [running XtraWare] and the XtraDrive [CN3 connector, see diagram below] is required. The following cables are available:

DESCRIPTION	Part Number
RS232C Communication Cable, 1.5 meters	004145
RS422 Communication Cable, 1.5 meters	004197
RS422 Communication Cable, Double XtraDrive, 1.5 meter	s 004196
RS422 Communication Cable, Double XtraDrive, 3 meters	004194
RS422 Communication Cable, Double XtraDrive, 5 meters	004195

2.2

24 XtraDrive Users Guide

Page is intentionally left blank - for you to fill with your own notes.

Environmental Factors

Proper operation of the XtraDrive requires clean power and external control circuits to provide safe operations for your applications.

logic

The following points should be taken into consideration:

- A molded-case circuit breaker (MCCB) to completely isolate the XtraDrive and associated servos from external power if over-current is detected. *See Chapter 1.14, page 14 for more detail.*
- Noise filters to eliminate electrical noise from external power. See Appendix B, Chapter B 2, page B6 for more detail.
- A magnetic contactor turns the servo ON or OFF– power is split before the connector so that power can be maintained to the XtraDrive logic when power to the motor is interrupted. Use a surge suppressor for the magnetic contactor. See

Determining Drive AC Voltage Requirements

If you are not sure of the power supply requirements for the XtraDrive unit you have, it can be found by looking at the model number on the devices label and comparing to the chart. See *Chapter 2, page 22 "XtraDrive System Components"*.

Connecting The XtraDrive To An AC Power Supply

The following types of AC power wiring are used in the XtraDrive family each of which is covered below:

Table: Main Circuit Names and Description

Terminal Symbol	Name	Description			
L1, L2		30W to 1kW	Single-phase 200 to 230V (+10%, -15%), 50/60Hz		
111717*	Main circuit AC input terminal	1kW to 3kW	Three-phase 200 to 230V (+10%, -15%), 50/60Hz		
L1, L2, L3 [*]		2kW to 5.0kW 400V	Three-phase 380 to 480V (+10%, -15%), 50/60Hz		
U, V, W	Servomotor connection terminal	Connects to the Servom	otor.		
110 120			Single-phase 200 to 230V (+10%, -15%), 50/60Hz		
LTC, LZC	Control power input terminal	30W to 5.0kW	Three-phase 200 to 230V (+10%, -15%), 50/60Hz		
24V, 0V			24VDC (±15%) 400V units only		
(2 places)	Ground terminal	Connects to the power supply ground terminals and motor ground term			
B1, B2 or	External regenerative	30W to 400W	Normally not connected. Connect an external regenerative resistor (provided by customer) between B1 and B2 if the regenerative capacity is insufficient. Note: No B3 terminal.		
B1, B2, B3	resistor terminal	500W to 5.0kW	Normally short B2 and B3 (for an internal regenerative resistor). Remove the wire between B2 and B3 and connect an external regenerative resistor (provided by customer) between B1 and B2 if the capacity of the internal regenerative resistor is insufficient.		
⊕1,⊕2	DC reactor terminal connection for power supply harmonic wave countermeasure	Normally short ⊕1 and If a countermeasure aga connect a DC reactor be The amplifier is delivere See 5.8.6 Reactor for I	\bigoplus 2. inst power supply harmonic waves is needed, tween \bigoplus 1 and \bigoplus 2. d from the factory with these terminals shorted. Harmonic Suppression for details.		
Ð	Main circuit Positive terminal	Normally not connected.			
Θ	Main circuit Negative terminal	Normally not connected	l.		

*Models XD-08 and XD-15-MS has single-phase, 200V power supply specifications. Connect the following power supply between L1 and L3.

Single-phase 220 to 230 VAC +10%, -15% (50/60Hz)

When the input power is less than 15% of the rated value then alarm A41, indicating under voltage, may occur when accelerating to max speed with max torque of servo motor.

CONNECTIONS TO THE XTRADRIVE

3.1

Connect main power supply shown at the left to L1 and L3 terminals. Power supply is single-phase, 220 to 230 VAC +10% to -15%, 50/60Hz. When the input power is less than 15% of the rated value then alarm A41, indicating under voltage, may occur when accelerating to max speed with max torque of servo motor.

29

30 XtraDrive Users Guide

NOTE: The illustration on this page shows a block connector. Units with power ratings of 1kW and below will use block connectors similar to this page, and unites with power rating greater than 1kW will use screw terminal strips similar to page 32.

THREE- PHASE 400 V MAIN CIRCUIT Specifications

Connecting Feedback Cable and Motor Power

Connecting Feedback Cable and Motor Power

IMPORTANT

If you have a motor with a brake, power must be applied to the brake or the motor will not operate, See *Chapter* 7.5.4, page 122 "Using the Holding Brake". All motors require power and feedback cables as shown in the **terminal strip diagram** below. Some have an optional brake that requires its own power (incoming power should be conditioned against noise and have a magnetic contactor to interrupt power *-See Appendix E, Section E 5, page E8 for more detail*). The four wires from the cable are the ground and those labeled "U", "V", and "W". The grounds should be connected to the screw terminals and the wires inserted into the terminal block or terminal strip depending on the XtraDrive model you are using. The Feedback connector should be inserted into the CN2 connector.

TRIAL OPERATION TESTING THE SYSTEM

4.1

Two Methods of Testing

There are two methods of testing the XtraDrive - Servo motor combination, both of which use the JOG function to run the motor.

CAUTION	 Forward Run Prohibited (/P-OT) and Reverse Run Prohibited (/N-OT) signals are not effective during JOG operations using parameter Fn002. The motor should NOT be connected to a load. The motor body should be mounted to a support to prevent movement during test operations.
	movement during test operations.

Two Methods of Trial Operation

The following material describes two different methods of trial operation:

Note:

Not all functions available throught XtraWare are available throught the front panel. • Using a combination of the XtraWare software, the XtraDrive, and a servo motor, (see *Chapter 4.3, page 35*)

and,

• Using the XtraDrive and servo motor, with control function entered through the XtraDrives Operator Panel (see *Section 4.4, page 38 and Appendix C 1, page C3*).

In both cases, it is assumed that main power has been provided to the XtraDrive controller and motor, and, that the feedback cable* has been connected to CN2 connector on the XtraDrive as described in the previous chapter.

4.2

POWER CONNECTIONS USED IN THIS EXAMPLE

In the example below an XtraDrive (Model #XD-01-LN) will be connected to a Sigma II AC Servo Motor (Model #SGMAH-01BAF41). The following diagram shows the wiring connections used (your equipment may differ from this setup. (*See Chapter 3.1, page 27 "Connections to the XtraDrive"* for examples).

NOTE: The cables are factory supplied.

NOTE: The wires from the motor to the terminal blocks are labeled and color-coded.NOTE: Instructions for connecting wires to the terminal blocks can be found on *Page 13 of the XtraDrive Series User Guide*.

In this example the AC power connection to L1 and L2 is also connected to L1C and L2C. In normal operation the power to L1 and L2 could pass through an emergency switch that interrupts power to the servo motor. The connections to L1C and L2C allow power to the XtraDrive's logic to be maintained if the motors operation is stopped. Also note that in this test setup, the motor is allowed to run without any connection to other equipment.

Pnot error message

When all the wiring is completed, except for the connection to the PC, and the XtraDrive is powered on, you should get a flashing "PNOT" error message in the LEDs on the top of the controller (**the rightmost 3 LED sets will alternate between** "**Pot" and "not" to form the error message**). This error condition will be corrected once the XtraDrive is connected to the PC's serial port and the XtraWare software; **LEDs will read bb after errors are cleared**. If you see other error conditions, *refer to Appendix A 2.1, page A5*; all other alarm conditions should be corrected before proceeding. If the power has been turned on, turn it off before connecting the XtraDrive to the computers serial port.

COMPUTER, XTRADRIVE, AND SERVO MOTOR CONNECTIONS

1. The XtraDrive's use of RS-232-C / RS-422-A point-to-point serial communications requires a separate serial port for each XtraDrive connected to a PC. Connect the CN3 connector on the XtraDrive to the PC's serial port and run the XtraWare Software. Turn the power on to the XtraDrive. See *Section 2.2, page 23.*

Establishing Communications Between the PC and the XtraDrive

2. Run the XtraWare software (Start > All Programs > XtraWare >XtraWare). The first screen you will see when XtraWare begins is the Driver Version Selection dialog box. There are three choices in the pull-down window. Match the option that fits the version number on the XtraDrive you are using (the version number will be located next to the model number near the top of the XtraDrive). Click "OK" to close the window.

The entries in the pull down window will vary with the version of the software you are using. Use the entry that most closely matches the version on your XtraDrive. OR

If you can not determine the proper version number of the firmware use the latest version in the pull down menu.

Driver V	ersion 3.0 or higher	*
Select th sticker)	e driver version that you are going to work with. (See driver version	
If the driving the sequence of	er version is not known it is recommended to do the following 8:	
1) Seleci 2) Try to	arbitrary driver version. establish communication with the driver.	
3) See th	e driver version (System Information). and open the software with the suitable driver version.	

Communications Settings

- 3. Note: Although several XtraDrives can be connected to a PC, XtraWare can only address one drive at a time.
- 3. Click on the Communications menu on the menu bar. Make sure that "Off-Line" is checked - the Settings option can't be accessed if the system is On-Line. Choose the "Settings" option. Choose the Port for the XtraDrive communications (the default is COM1, the normal selection for most computers). In this example, the Axis Address will be "0". Applications with more than one XtraDrive/Servo Motor combination will use other Port/Axis settings to communicate with the added devices. The Axis parameter is used to tie subsequent settings to serial ports. See Appendix A 2.3, pageA34.

4. Click "OK" to close the window.

Communications Menu - On-Line Option

5. Select the "On-Line" option of the Communications menu. At this point the

"Pnot" error should clear, however other error messages will be displayed on the computer screen since the full set of control parameters haven't been entered; entering the full set of parameters is application specific and beyond the

- scope of this guide. The errors, such as:
 - Error 152 Negative Over Travel
 - Error 151 Positive Over Travel
 - Error 26 Wrong Setting Profile, Speed, Accelerate, or Jerk can be cleared by clicking on "OK".

Chapter 4

- 2. Clicking on either of the icons below the "Servo ON" button will cause the motor to operate as long as the left mouse button is held down, with the shaft turning to the right or left depending on the icon clicked. Depending on how you have the motor oriented, the direction of the shaft rotation may not match the icons direction. For example, if the motor has a single shaft protruding and you view it from that end, the rotation would be the opposite of that expected from the icon.
- 3. When you are done, click "Servo ON" to turn it off, and "Cancel" to close the dialog box. The error messages noted above may reappear, if they do click "OK" to clear them.
- 4. Click File > Exit to exit from the XtraWare software. Turn the power to the XtraDrive off, and wait until the red "Charge" LED dims before disconnecting any wiring.

Using the JOG Function

- Forward Run Prohibited (/P-OT) and Reverse Run prohibited (/NOT) signals

be connected to a load.

-The motor should be mounted to a support to prevent movement during test operations.

-Adjust the speed setting to a slow safe speed.

4.4

JOG OPERATION USING OPERATOR PANEL

Operation from the operator panel allows the servo amplifier to run the motor. This allows checking the motor's rotation direction and speed setting rapidly during machine setup and testing, saving the time and trouble of connecting to a host controller. In this example it is assumed that power has been connected to the main power and control power terminal blocks *as illustrated on pages 27-32*.

Working with the XtraDrive Operator Panel

Кеу	NAME	FUNCTION
	Up Arrow	 Press this key to set parameters or display the set values of parameters. Press the Up Arrow key to increase the set
	Down Arrow	valuePress the Down Arrow key to decrease the set
•		 value Press the Up and Down Arrow keys together to reset a servo alarm.
MODE/SET	Mode/Set	Press this key to select the Status Indicator mode, Auxiliary Function mode, Parameter Setting mode, or Monitor mode. See figure below.
	DATA/SHIFT	• Press this key to set each parameter or display the set values of parameters.
DATA/		• This key is used for selecting the editing (flashing) digit or data setting

Basic Mode Selection

Chapter 4

Operating Procedure

The following steps show how the JOG function can be used to control the servo motor.

1. Press the **MODE/SET** key to select Fn002 in the Auxiliary Function mode.

2. Press the **DATA/SHIFT** key for a minimum of one second select the Panel Operator Operation mode. Operation is now possible using the panel operator.

3. Press the MODE/SET key to set the servo to ON (with motor power turned ON).

4. Press the **Up Arrow** ▲ or **Down Arrow** ▼ key to operate the motor. The motor keeps operating while the key is pressed.

Motor Forward Rotation Motor Reverse Rotation

- 5. Press the **MODE/SET** key to set the servo to OFF state (with motor power turned OFF). Alternatively, press the **DATA/SHIFT** key for a minimum of one second to set the servo to OFF state.
- 6. Press the **DATA/SHIFT** key for a minimum of one second, and the display will revert to Fn002 in the Auxiliary Function mode.

This ends JOG operation under panel operator control.

The motor speed for operation under digital operator control can be changed with the following parameter:

PARAMETER	SIGNAL	SETTING (RPM)	Application
Pn304	Jog Speed	Default Setting: 500	Speed Control

Note: The rotation direction of the servo motor depends on the setting of parameter Pn000.0 "Rotation Direction." The above example shows a case where Pn000.0 is set to "0" as a default setting. *See Section 7.1.1*.

Forward Kun Fromblied (/P-OT) and Reverse Run prohibited (/NOT) signals are not effective during JOG operations using parameter Fn002.

- The motor should NOT be connected to a load.

-The motor should be mounted to a support to prevent movement during test operations.

-Adjust the speed setting to a slow safe speed.

Summary...at this point

Once the system has been successfully jogged using XtraWare or through the Operator Panel, the driver-motor basic system operation is confirmed in working order, specifically:

- AC power has been applied correctly.
- The drive has powered up and is operating properly
- The motor power and feedback cables are connected correctly and the drive recognizes the feedback signals.

The following chapters provide the user with the information they need to use the XtraDrive as part of the servo-motor controlled components in their application.

A setup wizard is provided in XtraWare to make configuring the systems operation for the users specific requirements (Refer to *Chapter 6, page 69*). It is recommended that the user utilize this tool once the system has been successfully run in trial operation.

I/O SIGNALS CN-1 CONNECTOR **ENCODER INTERFACE CN-2** CONNECTOR

CHAPTER

Note: Not all functions available throught XtraWare are available throught the front panel. The XtraDrive's CN-1 connector provides the input/output interface wiring between the driver and your application. Functions such as travel limits, alarms, mode control, motor speed / torque limits, and brake control are handled through this connection. The 50-pin plug provides 7 programmable inputs and 3 programmable outputs in addition to fixed function pins. Parameters that control the behavior of the system can be set through either the XtraWare software or the Operator Panel (See Chapter 9, page 189). The Screw Terminal Adapter is available for applications that require screw terminal connectors.

	XTR	ADRIVE	Applicable Receptacle Kit (YET P/N:4J4003)					
	Con	NECTOR	CONNECTOR CASE			MANUFACTURER		
	10250-	52A2JL or	MDR 10150-300	00VE	1	0350-52A0-	008	Sumitomo 3M Co.
	Equiva Right A	lent 50-pin Angle Plug	50-pin					
	CN-1 '	Ferminal	Layout Last Position	n		Position 2 - Position 3 -		Position 1 V
Pin #	Symbol	DE	SCRIPTION	PIN	#	Symbol		DESCRIPTION
1	SG	Ground		25	5		Progr	ammable Output 1 +
2*	SG	Ground		26	5		Progr	ammable Output 1 -
3	PL1	Open-colle	ctor reference	27	7		Progr	ammable Output 2 +
4 54	(IEN)	power supp		28	3		Progr	ammable Output 2 -
4*	SEN	SEN signa	linput	29)		Progr	ammable Output 3 +
2	V-REF	+ 10 V/rate	speed input ad motor speed	30)		Progr	ammable Output 3 -
6	SG	Ground	31	L	ALM+	Servo alarm output		
7	PULS	Reference	32	2	ALM	Servo	alarm output	
8		Reference	33	3	PAO	PG di	vided output A-phase	
9	T-RFF	Torque refe	Torque reference input			/PAO	PG di	vided output A-phase(comp
,	I IULI	$\pm 10 \text{ V/rate}$	ed motor torque	35	5	PBO	PG di	vided output B-phase
10	SG	Ground		36	5	/PBO	PG di	vided output B-phase(comp
11	SIGN	Reference	sign input	37	7	AL01	Alarn	n code output
12	/SIGN	Reference	sign input	38	3	AL02	Alarn	n code output
13	PL2	Open-colle	ctor reference	39)	AL03	Open	-collector output
		power supp	oly	40)		Progr	ammable Input 0
14	/CLR	Clear input		41	L		Progr	ammable Input 1
15	CLR	Clear input	-	42	2		Progr	ammable Input 2
16	TMON	Analog mo	nitor output	43	3		Progr	ammable Input 3
17	VTG	Analog mo	nitor output	44	1		Progr	ammable Input 4
18	PL3	Open-colle	ctor reference	45	5		Progr	ammable Input 5
		power supp	46	5		Progr	ammable High Speed Input	
19	PCO	PG divided	l output C-phase	47	7	+24V -IN	Exter	nal input power supply
20	/PCO	PG divided	l output C-phase	48	*	PSO	S-pha	se signal output
21*	BAT (+)	Battery (+)		49	*	/PSO	S-pha	se signal output
22*	BAT (-)	Battery (-)		50)	-	-	

Chapter 5

5.2

I/O SIGNAL NAMES AND FUNCTIONS

The following section describes servo amplifier I/O signal names and functions.

Input Signals

SIGNAL NAME		PIN NO.		Reference			
		40	Programmable Inpu				
		41	Programmable Inpu				
		42	Programmable Inpu				
		43	Programmable Inpu				
		44	Programmable Inpu	Programmable Input 4 function selected via parameter			
		45	Programmable Inpu	Programmable Input 5 function selected via parameter			
Common		46	Programmable High parameter	Programmable High Speed Input 6 function selected via parameter			
	+24V in	47	Control power supp must provide the +2				
	SEN	4 (2)	Initial data request				
	BAT+ BAT-	21 22	Connecting pins for	Connecting pins for the absolute encoder backup battery.			
Speed Reference V-RE		5 (6)	Speed reference inp (Input gain can be r				
Torque Reference	T-REF	9 (10)	Torque reference input: ± 10 V/rated motor speed (Input gain can be modified with a parameter)				
Position Reference	PULS /PULS SIGN /SIGN	7 8 11 12	Corresponds to reference pulse input Line-driver Open-collectorInput Mode • Code + pulse string • CCW/CW pulse • Two-phase pulse (90° phase differential)				
	CLR /CLR	15 14	Error counter clear: Clears the error counter during position control.				

NOTE: 1. Pin numbers in parenthesis () indicate signal grounds.

2. The voltage input range for speed and torque reference is a maximum of ± 12 V.

Output Signals

SIGNAL N	NAME	Pin No.	Fur	NCTION				
	ALM+ ALM-	31 32	Servo alarm: Turns OFF when an error is detected.					
		25	Programmable Output 1 - function selected via paramete					
		26	Programmable Output 1 - function selected via parameter -					
		27	Programmable Output 2 - fut	nction selected via parameter +				
		28	Programmable Output 2 - fui	nction selected via parameter -				
		29	Programmable Output 3 - fut	nction selected via parameter +				
		30	Programmable Output 3 - fui	nction selected via parameter -				
Common	PAO /PAO PBO /PBO PCO /PCO	33 (1) 34 35 36 19 20	A phase signal A phase signal (comp.) B phase signal B phase signal (comp.) C phase signal C phase signal	Converted two-phase pulse (A and B phase) encoder output signal and origin pulse (C phase) signal: RS-422 or the equivalent.				
	PSO /PSO	48 49	S phase signal With an absolute encourage outputs serial data corresponding to the of revolutions (RS-4) equivalent)					
	AL01 AL02 AL03	37 38 39(1)	Alarm code output: Outputs 3-bit alarm codes. Open-collector: 30V and 20mA rating maximum.					
	TMON	16	Analog monitor signal +					
	VTG	17	Analog monitor signal -					
Not used.		23 24 50	These terminals are not used. Do not connect to these terminals.					

NOTE: Pin numbers in parenthesis () indicate signal grounds.

3 INTERFACE CIRCUITS

This section shows examples of servo amplifier I/O signal connection to the host controller.

Interface for Reference Input Circuits

Analog Input Circuits

Analog signals are either speed or torque reference signals at the impedance below.

- Speed reference input: ~ $14k\Omega$
- Torque reference input: ~ $14k\Omega$

The maximum allowable voltage for input signals is $\pm 12V$ @ min 50mA.

Reference Position Input Circuit

An output circuit for the reference pulse and error counter clear signal at the host controller can be either line-driver or open-collector outputs. These are shown below by type.

5.3

The following examples show how to select the pull-up resistor R1 so the input current (I) falls between 7 and 15mA.

	Application Examples	
$\begin{array}{l} R1 = 2.2 k \Omega \text{ with} \\ VCC = 24 V \pm 5\% \end{array}$	R1 =1k Ω with VCC = 12V ±5%	R1 = 180Ω with VCC = $5V \pm 5\%$

This circuit uses the 12V power supply built into the servo amplifier. The input is not isolated in this case.

Input Circuit Interface

The programmable input circuit interface connects through a relay, open collector transistor or NPN/PNP sensor circuit.

Open-collector Output, Example 2: Using a servo amplifier with an internal 12V power supply Any of the following three types of servo amplifier output circuits can be used. Connect an input circuit at the host controller following one of these types.

Connecting a Line-Driver Output Circuit

<u>Encoder serial data</u> converted to two-phase (A and B phase) pulse output signals (PAO, /PAO, PBO, /PBO), origin pulse signals (PCO, /PCO) and S phase rotation signals (PSO, /PSO) are output via line-driver output circuits that normally comprise the position control system at the host controller. Connect the line-driver output circuit through a line receiver circuit at the host controller.

P: Indicates twisted-pair wires.

Connecting an Open-Collector Output Circuit

<u>Alarm code signals</u> are output from open-collector transistor output circuits. (ALO1 – CN1-37, ALO2 – CN1-38, ALO3 – CN1-39) Connect an opencollector output circuit through an optocoupler, relay, or line receiver circuit.

Connecting an Optocoupler Output Circuit

<u>Optocoupler output</u> circuits are used for servo alarm, servo ready, and other sequence output signal circuits.

Connect an optocoupler output circuit through a relay or line receiver circuit.

NOTE: The maximum allowable capacities for optocoupler output circuits are: • Voltage: 30V_{DC} • Current: 50mA_{DC}

Connect output of "master" XtraDrive to input of "slave" XtraDrive.

Maximum current: 50mA.

CN-1 Wiring **D**iagrams for **O**perational Modes

The XtraDrive's CN-1 connector can be used to control a servo motor in several modes as noted in the table below. The wiring diagrams associated with these modes are shown on the following pages.

Mode	MODE DESCRIPTION
0	Speed Analog – an external analog speed signal reference is supplied. Signal reference range is +/-2 to +/-10V/ rated motor speed.
1	Control from Option Board – system operation is controlled by an external application board (Note: XtraDrive must be configured to include CN-10 connector from the factory to allow for option board capability)
2	Torque (Analog) – an external analog torque signal reference is supplied. Signal reference range is $+1$ to $+/-10V/$ rated motor torque.
3	Speed Contact – The speed is controlled by selecting digital I/O and setting preset speeds in the Servo Amplifier
4	Speed (Contact /Analog) – Speed is controlled by both the analog reference and Digital Inputs
5	Not Used
6	Speed (Contact/Torque Analog) - Speed is control using the torque Analog and the preset speeds and digital Inputs
7	Not Used
8	Not Used
9	Torque- Servo is torque controlled only uses the analog speed input
А	Speed Control (Analog/Zero Clamp) - The Speed of the servo is controlled by the Speed Analog input with configurable dead band.
В	Not Used
С	NCT Position Control (Pulse Train) – external pulse train signals are used as position reference for the servo system.
D	NCT Programming Mode – control of the servo system utilizes the on-board indexer, and full programmability of the XtraDrive

Typical Connections for Speed Control Operation

Typical Connections for Analog Torque Control

Typical Connections for Torque Control Operation

Typical Connections for NCT Programming Operation

Typical Connections for NCT Position Control

Chapter 5

ENCODER INTERFACE CN-2 CONNECTOR

The XtraDrive's CN-2 connector provides the interface wiring between the driver and the motors encoder.

CN-2 Connector Models

SOLDERED PLUG

MDR 10120-

XTRADRIVE INTERNAL

CONNECTOR

10220-52A2JL
20 PIN10120-
3000VE 20-PIN
(YET P/N: 4J4001)10320-52A0-008
(YET P/N: 4J0101)54280-0600 6PIN
(YET P/N: 4J1521)Note: The motor-end relay socket connects to the encoder connector for the SGMAH and SGMPH
servo motors.

APPLICABLE PLUG (OR SOCKET)

CASE

SOLDERED PLUG

(SERVO MOTOR SIDE)

CN-2 CONNECTOR TERMINAL LAYOUT

OPTIONAL: CN-2 CONNECTOR WITH COMMUTATION SENSORS TERMINAL LAYOUT

Pin #	Symbol	DESCRIPTION
1	PPG0V	PG GND
2	PPG0V	PG GND
3	PPG0V	PG GND
4	PPG5V	PG +5V
5	PPG5V	PG +5V
6	PPG5V	PG +5V
7	NC*	-
8	PS	Serial PG S-phase
9	/PS	Serial PG /S-phase
10	SPG5V	Serial PG +5V
11	SPG0V	Serial PG GND
12	BAT+	Battery "+" Input
13	BAT-	Battery "-" Input
14	PC	PG C-phase
15	/PC	PG /C-phase
16	PA	PG A-phase
17	/PA	PG /A-phase
18	PB	PG B-phase
19	/PB	PG /B-phase
20	NC*	-

PIN #	Symbol	DESCRIPTION
1	PPG0V	PG GND
2	PPG0V	PG GND
3	PPG0V	PG GND
4	PPG5V	PG +5V
5	PPG5V	PG +5V
6	PPG5V	PG +5V
7	/UIN	U-phase Hall Effect
8	NC*	-
9	/VIN	V-phase Hall Effect
10	SPG5V	+5V
11	SPG0V	GND
12	BAT+	Battery "+" Input
13	BAT-	Battery "-" Input
14	PC	PG C-phase
15	/PC	PG /C-phase
16	PA	PG A-phase
17	/PA	PG /A-phase
18	PB	PG B-phase
19	/PB	PG /B-phase
20	/WIN	W-phase Hall Effect

NOTE: NC*-leave contact open.

NOTE: NC*-leave contact open.

The setup Wizard is used to initialize selected parameters, (*see Chapter 7, page 67*), for a more complete description refer to the XtraWare Users Manual. The following section tells you how to setup the mode of operation for the system and shows **TYPICAL** connections for the different Modes listed below.

SETUP THE MODE OF OPERATION

6.1

Now that you have setup the system, you have to setup its mode of operation.

The Servo System may be controlled in the following Modes:

- 0 **Speed Analog** Where external analog speed signal reference is supplied. Signal reference range is +/-2 to +/-10V/ rated motor speed.
- 1 Control from Option Board Where system operation is controlled by external application board (Note: XtraDrive must be configured to include CN-10 connector from the factory to allow for option board capability).
- 2 **Torque (Analog)** Where external analog torque signal reference is supplied. Signal reference range is +1 to +/-10V/ rated motor torque.
- 3 **Speed Contact** The speed is controlled by selecting digital I/O and setting preset speeds in the Servo Amplifier.
- 4 **Speed (Contact /Analog)** Speed is controlled by both the analog reference and Digital Inputs.

- 6 **Speed (Contact/Torque Analog)** Speed is control using the torque Analog and the preset speeds and digital Inputs.
- 9 Torque Servo is torque controlled only uses the analog speed input
- A **Speed Control** (Analog/Zero Clamp) The Speed of the servo is controlled by the Speed Analog input with configurable dead band.
- C NCT Position Control (Pulse Train) Where external pulse train signals are used as position reference for the servo system.
- D NCT Programming Mode Where control of the servo system utilizes the on-board indexer, and full programmability of the XtraDrive

So we will show **TYPICAL** connections for the different Modes Listed Above.

Open XtraWare File >New Project

Motor Models
Al Models
Linesy code abob (D-200)
0 [pm] Show Motor Dharacteristica
lotor Model

The following screen will appear:

Select a motor from those listed. In this example, we will show the Yaskawa setup procedure.

Click on Sigma II and press Next, and the following screen will appear:

elect Control Method	Axis address
Programming	
not.	
et motor grection	Software commutation (W/thout sensors)
Forward Direction	With commutation sensors (U.V.W.) (Applicable in specific models only)
C Reverse Direction	C With commutation sensors (/U /V /W) (Applicable in specific models only)
fected Parameters	
Pn000 : Function selection I	basic switches

The wizard allows you to select one of the following:

- Yaskawa Option Board
- Position Control (Pulse Train)

. ..

• NCT Programming

If you are using the XtraDrive in any other mode than these three, pick programming mode and we will explain how to get to the mode you need later in the procedure.

NOTES: Don't be concerned with forward and reverse direction as they can be changed at a later time.

	The axis address is set to zero. If you are only using one axis
and you are	not multi-dropping the axes then leave it at zero. Higher
axis numbers are	used to address additional XtraDrive units.

Be careful to mark the Axis Number somewhere near or on the drive so you can select the axis number in Communication Settings after we finish and download the parameters.

If you are multi-dropping the drives axis 0 is not used and the multidrop axes should be set to 1-F in order to multi-drop. Be careful to mark the Axis Number somewhere near or on the drive so you can select the axis number in Communication Settings after we finish and download the parameters.

Press Next and the following screen will appear:

User Position Units	
	User Units XtraDrive allows you to set your own units for position, speed and acceleration.
	Position Unit Position Unit I [User Position Unit] = Affected Parameters User Position Unit . Ph/281, Ph/283 . Ph/282
	Speed Unit 1 [Encoder counts] 1 [User Speed Unit] * 1 [msec] Allected Parameters [msec] User Speed Unit : Pn284 ; Pn287 ; Pn286
	Acceleration Unit 1 [User Acceleration Unit] = 1 [User Acceleration Unit] = [1] [Encoder counts] Attended Parameters [1] [1] User Acceleration Unit : Pn2BB , Pn2BB , Pn2BA
	<back next=""> Cancel Help</back>
The concept of "User Pouse of the XtraDrive. The provides the basis for the the basis for the basis	osition Units" is key to understanding how to make successful he value - a ratio of two numbers entered into the screen abo

use of the XtraDrive. The value - a ratio of two numbers entered into the screen above - provides the basis for the XtraDrives conversion of encoder counts (how much to turn the motor) into real-world units of measurement (moving a load 2 inches for example). The units chosen have to be done carefully since the drive can only be told to move an integer number of user position units and thus controls the accuracy of the systems behavior. There are two constraints on the numbers used in setting the numerator and denominator of the User Position Unit ratio: the accuracy required, and, the resulting ratio has to be in the range of 0.01 to 100.

The numerator is taken from the number of bits in the encoder (12-, 13-, 16-, 17bits, depending on the motor model, yielding 8,192, 65,536, and 131,072 counts respectively). The table below gives the resolution of different motor types. This number is the resolution limit on your control over the motors rotation. Applications requiring very high levels of accuracy will need an encoder with a higher number of bits. This determination has to take into account the entire design of the system including gear-boxes, screw pitches, belts and pulleys, etc., that may be positioned between the motor and object being controlled.

The denominator is derived from your applications requirements. If you needed an accuracy of one degree of rotation, then the value would be 360, a tenth of a degree would require a value of 3600. It is important that both the numerator and denominator be integers. Non-integer values (360.1 for example) can lead to cumulative errors between the encoders position and the position of a load in the realworld or Object-Out-of Position Situation.

MOTOR TYPE	RESOLUTION	Encoder Type
SGMAH-xxxAxxx	8,192 (13 Bit)	Incremental
SGMAH-xxx1xxx	65,536 (16 Bit)	Absolute
SGMPH-xxxAxxx	8,192 (13 Bit)	Incremental
SGMPH-xxx1xxx	65,536 (16 Bit)	Absolute
SGMGH/SGMSH	131,072 (17 Bit)	Incremental or Absolute

If we had a 13-bit encoder (8192 counts per revolution) with a required accuracy of 0.1 degree, then our ratio would be 8192 / 3600 or 2.275 + which is within the 0.01 to 100 restriction. With those values we can only have an accuracy of 0.1 degrees of rotation since the XtraDrive can only be told to move an integer number of User Position Units.

PLEASE NOTE: If you leave the 1/1 ratio in the position units you will be programming moves in counts.

Speed Units RPM

The next pair of values are the Speed Units. Instead of being concerned about how far something moves the issue is how fast and that is expressed in revolutions per minute (RPM). The numerator is again taken from the encoder counts and the denominator is in milliseconds (ms). If we wanted one revolution per minute as our speed, one full revolution is 8192 encoder counts so the ratio would be 8192 / 60000; with 60000 milliseconds per minute.

The final pair of values is the Acceleration User Units. Acceleration is measured in radian/sec². The numerical coefficient of the time value (denominator) is expressed in terms of the number of milliseconds times 10. Still working with a 13-bit encoder, if we wanted an acceleration of a full revolution in one sec-per-second (sec²) that would give us 2π radians/sec² [8192 counts/($2\pi \cdot 10 \cdot 1000$ msec) or 8192/62832]. 8192 and 62832 would be entered into the numerator and denominator respectively.

Press Next and the following screen will appear.

Default motion proble			
Speed [User Speed Unit]	0		
Acceleration [User Acceler Jerk [usec]	abon Unit] 0		
Affected Parameters			
Default Speed : Pn2A2 ,	Pn2A3		
Derault Acceleration : Ph	2944 , Ph295		
Default Jerk : Pn2A6			
2			
Advanced Setting			

This screen sets up the default speed and acceleration profile. When you are programming moves and do not specify a speed this will be the default speed that the servo will run at.

Typically Speed is set for 3000 and Acceleration is set for 5000 and Jerk Time stays at Zero. If you click on the advanced setting button, the following screen is displayed:

Setting Different Functions of the Drive

This is where you can set different functions of the drive. The default settings are almost always good for applications

Press OK

Press Next

A	dvanced Setting Set required motion precision		Ľ
	Motion End Window [User Position Unit]. Motion command ending	7	
	Pulse Train Synchronized Window [User Position Unit]. Setting of Follower synchronized variable.	7	
	Position Completed Width [User Position Unit]. Activation of CDIN digital output.	7	
	Alfected Parameters Pn2C0 : Motion End Window . Pn2C4 : Putre Train Synchronized Window Pn500; Position Completed Width		
	0	Car	vcel

This screen is only important if you are using Analog Torque and Speed Signals. The default Speed reference is 0-6VDC gives the rated speed of the motor. This parameter can be changed to match your controller. Torque Reference is scaled 3.0 volts for rated torque. You must configure this to match your controller.

eed Reference				
nter the ratio of	reference voltage and speed	t reference		
200	[0.01 V/rated speed]			
Allected Pro-	-			
Pn300 : Spe	d Reference Input Gain [15	0 - 3000)		
rque Referenc				
nter the ratio of	reference voltage to the torq	ue reference		
30	[0.1 V/rated torque]			
Allected Para	veters un Reference lanut Gain (10	1.1001		
Phe00:100	se mererence input dan [ru	(-100)	100	

Press Next

sterence Pulse Form	ter server and ter
Select pulse form and number of reference units per	pulse Select logic
C Sign + Pulse train	Positive logic C Negative logic
C Forward Pulse + Reverse Pulse	
C AB x1	
C AB x2	
@ A8 x4	
Attected Parameters Pn200 : Position Control Reference Selection Sw	Position Completed Width for CDIN Output

Signal	Reverse Polarity	0	1	2	3	4	5	6	Always On	Always Off
P-01										4
N-OT										
/ALM-RST										
/P-CL										4
/N-CL										Y
/INHIBIT										V
/Emergency										4
New Move Enable									X	
Home Switch										
Affected Paramete	rs	-504	D-500 (0.000 I	2.600	2201	2.977			

This screen allows the user to configure the inputs on terminals 41-46 of the CN-1 connector. Overtravel Switches, Reset, Current Limit Inputs, Inhibit, Emergency Stop, New Move Enable, and Home Switch. This is only configured if the XtraDrive must monitor Limits and the Motion controller doesn't want to control these. In NCT Programming and Pulse Train Mode just press **Next**.

llocation of ther digital	automatic system outputs are acce	m functions to digit essible by comman	tal outputs. ds for applicati	on.	
		1	2 3	Disabled	
	/S-RDY /BK			N	
	/FAST			1	
Affected Par	ameters				
Output Sig	nal Selection : Pn5	0E , Pn50F , Pn510 , F	Pn2D2		

These are the outputs Servo Ready, Brake and Fast Output (High Speed) these are disabled by default, they can be assigned as required for the application and in all other modes it is dependent on the controller and application. There are dedicated outputs as well. Press **Next**.

Enter the number of output pu	lses		
Pulses Output	[pulse / rev]		
Alfected Parameters			
PG Divider: Pn201			
			16

This is used to set up the encoder signal sent out to the external motion controller. You must set this parameter to set up the right number of counts per revolution of the motor.

A co	Defiguration project file has been created for
your	T XtraDrive and is ready to be downloaded.
To c	Operate your XtraDrive:
1	Press FINISH
2	Download parameters
3	Turn the driver Off and On
4 Warr	. Run Autotuning Science of the second state o

Down Load the Parameters. You **MUST CYCLE POWER OFF FOR 1-2 Seconds** for the parameters to be used.

66 XtraDrive Users Guide

Page is intentionally left blank - for you to fill with your own notes.

PARAMETER SETTINGS AND FUNCTION 7

CHAPTER

Before Reading This Chapter

This chapter describes the use of each CN1 connector I/O signals in the XtraDrive servo amplifier as well as the procedure for setting the related parameters for the intended purposes.

The following sections can be used as references for this chapter.

- List of CN1 I/O signals: See Chapter 5.1 "CN-1 Specifications".
- List of parameters: see Appendix C, "List of Parameters".
- Parameter setting procedure: See Chapter 9.1.5 " Operation in Parameter Setting Mode".

The CN1 connector is used to exchange I/O signals with the host controller and external circuits.

Parameter Configurations

Parameters are comprised of the types shown in the following table. See *Appendix C "List of Parameters".-*

Туре	Parameter Number	DESCRIPTION
Function Selection Constants	Pn000 to Pn007	Select basic and application functions such as the type of control or the stop mode used when
	Pn550 to Pn551	an alarm occurs.
Servo Gain and Other	Pn100 to Pn11E	Set numerical values (speed control).
Constants	Pn1A0 to Pn1C0	Set numerical values (position control).
Position Control Constants	Pn200 to Pn216	Set position control parameters such as the
1 Usition Control Constants	Pn2A2 to Pn2CB	application setting.
Speed Control Constants	Pn300 to Pn308	Set speed control parameters such as speed reference input gain and soft start deceleration time.
Torque Control Constants	Pn400 to Pn40A	Set torque control parameters such as the torque reference input gain and forward/ reverse torque limits.
Ducanommahla Constanta	Pn500 to Pn511	Set output conditions for all programmable
Programmable Constants	Pn200 to Pn2D2	allocations.
Others	Pn600 to Pn601	Specify the capacity for an external regenerative and reserved constants.
Auxiliary Function Execution	Fn000 to Fn014	Execute auxiliary functions such as JOG Mode operation.

Note: Refer to Chapter 9, "Using the Operator Panel" for details on:

- Using the Operator Panel,
- Selecting parameter, changing values
- Explanation of the Pn xxx.x notation, page 197

SETTINGS ACCORDING TO DEVICE CHARACTERISTICS

This section describes the procedure for setting parameters according to the dimensions and performance characteristics of the equipment used.

7.1.1 Switching Servo Motor Rotation Direction

XtraDrive has a Reverse Rotation mode that reverses the direction of servo motor rotation without rewiring. Forward rotation in the standard setting is defined as counterclockwise as viewed from the load.

With the Reverse Rotation mode, the direction of servo motor rotation can be reversed without changing other parameters. Only the direction (+, -) of shaft motion is reversed.

	Standard Setting	Reverse Rotation Mode
Forward Reference	Ccw Encoder output from XtraDrive PAO (phase A)	Encoder output from XtraDrive PAO (phase A)
Reverse Reference	Compared a compared by the second sec	Encoder output from XtraDrive PAO (phase A)

Setting Reverse Rotation Mode

Use the parameter Pn000.0.

PARAMETER	SIGNAL	Setting	CONTROL MODE
Pn000.0	Direction Selection	Default Setting: 0	Speed/Torque Control, Position Control

Use the following settings to select the direction of servo motor rotation

Setting	DESCRIPTION	
0	Forward rotation is defined as counterclockwise (CCW) rotation as viewed from the load.	(Standard setting)
1	Forward rotation is defined as clockwise (CW) rotation as viewed from the load.	(Reverse Rotation Mode)

See Section 9.1.5 to change parameter values.

7.1.2 SETTING THE OVERTRAVEL LIMIT FUNCTION

The overtravel limit function forces movable equipment parts to stop if they exceed the allowable range of motion.

Using the Overtravel Function

To use the overtravel function, connect the overtravel limit switch input signal terminals shown below to the correct pins of the servo amplifier CN1 connector.

Input ⇔P-OT CN1-42	Forward Run Prohibited (Forward Overtravel)	Speed/Torque Control, Position Control
Input⇒ N-OT CN1-43	Reverse Run Prohibited (Reverse Overtravel)	Speed/Torque Control, Position Control

Connect limit switches as shown below to prevent damage to the equipment during linear motion.

The drive status with an input signal ON or OFF is shown in the following table.

SIGNAL	STATE	INPUT LEVEL	DESCRIPTION
D.OT	ON CN1-42: low		Forward rotation allowed, (normal operation status).
P-OT	OFF	CN1-42: high	Forward rotation prohibited (reverse rotation allowed).
	ON	CN1-43: low	Reverse rotation allowed, (normal operation status).
N-OT	OFF CN1-43: high		Reverse rotation prohibited (forward rotation allowed).

Chapter 7

Enabling/Disabling Input Signals

Set the following parameters to specify whether input signals are used for overtravel or not. The default setting is "NOT USED."

PARAMETER	Signal	Setting	Control Mode
Pn50A.3	P-OT Signal Mapping (Forward Run Prohibit Input Signal)	Default Setting: 8	Speed/Torque Control, Position Control
Pn50B.0	N-OT Signal Mapping (Reverse Run Prohibit Input Signal)	Default Setting: 8	Speed/Torque Control, Position Control

Servo Motor Stop Mode for P-OT and N-OT Input Signals

Set the following parameters to specify the servo motor Stop mode when P-OT and N-OT input signals are used.

Specify the servo motor Stop mode when either of the following signals is input during servo motor operation.

- Forward run prohibited input (P-OT, CN1-42)
- Reverse run prohibited input (N-OT, CN1-43)
- Set the parameters according to limit switch type (NO or NC).

PARAMETER	SIGNAL	Setting	DESCRIPTION	
P-OT Signal		Example: 2	Uses the P-OT input signal to prevent forward rotation. (Forward rotation is prohibited when CN1-42 is open and is allowed when CN1-42 is at 0V).	
Pn50A.3	A.3 (Forward Run Prohibit Input Signal)	Default Setting: 8	Does not use the P-OT input signal to prevent forward rotation. (Forward rotation is always allowed and has the same effect as shorting CN1-42 to 0V).	
		Example: B	Inputs the reverse signal from CN1-42 input terminal.	
For more options of parameters Pn50A.3 and Pn50B.0 refer to Appendix C 4 "Input Signal Selections"				
Pn50B.0	N-OT Signal Mapping (Reverse Run Prohibit Input Signal)	Example: 3	Uses the N-OT input signal to prevent reverse rotation. (Reverse rotation is prohibited when CN1-43 is open and is allowed when CN1-43 is at 0V).	
		Default Setting: 8	Does not use the N-OT input signal to prevent reverse rotation. (Reverse rotation is always allowed and has the same effect as shorting CN1-43 to 0V).	
		Example: C	Inputs the reverse signal from CN1-43 input terminal.	

Connection example:

PARAMETER	SIGNAL	Setting	CONTROL MODE
Pn001.1	Overtravel Stop Mode	Default Setting: 0	Speed/Torque Control, Position Control

NOTE: For torque control, the servo motor will be placed in coast status after either decelerating or coasting to a stop (according to the stop mode set

PARAMETER	SIGNAL	SETTING	Control Mode
		0	Stops the servo motor the same way as turning the servo OFF (according to Pn001.0).
Pn001.1	Overtravel Stop Mode	1	Decelerates the servo motor to a stop at the preset torque, and then locks the servo motor in Zero Clamp mode. Torque setting: Pn406 Emergency Stop Torque
		2	Decelerates the servo motor to a stop at the preset torque, and puts the servo motor in coast status. Torque setting: Pn406 Emergency Stop Torque

Chapter 7

Pn406 specifies the stop torque applied for overtravel when the input signal for prohibiting forward or reverse rotation is used.

The torque limit is specified as a percentage of rated torque.

PARAMETER	SIGNAL	Setting (%)	CONTROL MODE
Pn406	Emergency Stop Torque	Range: 0% to Maximum	Speed/Torque
	(Valid when Pn001.1 is	Torque	Control, Position
	1 or 2)	Default Setting: 800	Control

7.1.3 LIMITING TORQUE

The XtraDrive servo amplifier limits torque as follows:

- Level 1: Limits maximum output torque to protect equipment or workpiece.
- Level 2: Limits torque after the servo motor moves the equipment to a specified position (external torque limit).
- Level 3: Control/limits output torque rather than speed.
- Level 4: Switches between speed and torque limit.

The application of level 1 and 2 in the torque limit function is described below. Levels 3 and 4 can be found in *Chapter 7.2.7* "Using Torque Control".

Setting Level 1: Internal Torque Limits

PARAMETER	Signal	Setting (%)	Control Mode
Pn402	Forward Torque Limit	Range: 0 to 800 Default Setting: 800	Speed/Torque Control, Position Control
Pn403	Reverse Torque Limit	Range: 0 to 800 Default Setting: 800	Speed/Torque Control, Position Control

Maximum torque is limited to the values set in the following parameters.

Sets the maximum torque limits for forward and reverse rotation. Used when torque must be limited due to equipment conditions.

74 XtraDrive Users Guide

rated torque

The torque limit function always monitors torque and outputs the signals below when the limit is reached.

SIGNAL	DESCRIPTION
/CLT	Generated when Pn50F.0 allocates an output terminal from SO1 to SO3.
Monitor Mode (Un006)	Output signal monitor

Torque limits are specified as a percentage of the Note: If the torque limit is set higher than the maximum torque of the servo motor, the maximum torque of the servo motor is the limit.

APPLICATION EXAMPLE: EQUIPMENT PROTECTION

Using the /CLT Signal

The following section describes the use of the contact output signal /CLT as a torque limit output signal.

Chapter 7

This signal indicates whether the servo motor output torque (current) is being limited.

Status	CONDITIONS	DESCRIPTION
ON	The circuit between CN1-1 and 2 is closed. CN1-1 is at low level.	Servo motor output torque is being limited. (Internal torque reference is greater than the limit setting).
OFF	The circuit between CN1-1 and 2 is open. CN1-1 is at high level.	Servo motor output torque is not being limited. (Internal torque reference is less than the limit setting).

Settings: Pn402 (Forward Torque Limit) Pn403 (Reverse Torque Limit) Pn404 (Forward External Torque Limit): CN1-45 input only Pn405 (Reverse External Torque Limit): CN1-46 input only

When the /CLT signal is used, the following parameter must be used to select the output signal.

PARAMETER	SIGNAL	Setting	Control Mode
Pn50F	Output Signal Selections 2	Default Setting: 0000	Speed/Torque Control, Position Control

Use the following table to select which terminal will output the /CLT signal.

Denergen	Setting	OUTPUT TERMINAL (CN1-)	
PARAMETER		*1	*2
Pn50F.0	0		
	1	25	26
	2	27	28
	3	29	30

NOTE: Multiple signals allocated to the same output circuit are output using OR logic. Set other output signals to a value other than the one allocated to the /CLT signal in order to use just the /CLT output signal. See *Chapter 7.4 "Output Circuit Signal Allocation"*.

Setting Level 2: External Torque Limit

A contact input signal is used to enable the torque (current) limits previously set in parameters. Torque limits can be set separately for forward and reverse rotation.

⇒ Input CN1-45	Forward External Torque Limit Input	Speed/Torque Control, Position Control
⇔ Output CN1-46	Reverse External Torque Limit Input	Speed/Torque Control, Position Control

This is the external torque (current) limit input for forward and reverse rotation.

Check input signal allocation status when using this function (see *Chapter 7.3* "*Input Circuit Signal Allocation*"). Default settings are given in the table below.

Signal	SIGNAL STATUS	Comments	DESCRIPTION
CN1-45	CN1-45 at low level when ON	Use forward torque limit.	Limit: Pn404
	CN1-45 at high level when OFF	Do not use forward torque limit. Normal operation.	
CN1-46	CN1-46 at low level when ON	Use reverse torque limit.	Limit: Pn405
	CN1-46 at high level when OFF	Do not use reverse torque limit. Normal operation.	

The following output signals and monitor methods are used when torque is being limited.

SIGNAL	DESCRIPTION
/CLT	Generated when Pn50F.0 is allocated to an output terminal from SO1 to SO3.
Monitor Mode (Un006)	_
• Un005: Numbers 6 and 7 (with default settings)	Refer to Chapter 9.1.6 "Operation in Monitor Mode".
• Un006: Depending on output signal allocation conditions.	

Application Examples:

- Forced stop
- Robot holding a workpiece

PARAMETER	Signal	Setting (%)	Control Mode
Pn404	Forward External Torque Limit	Range: 0 to 800 Default Setting: 100	Speed/Torque Control, Position Control
Pn405	Reverse External Torque Limit	Range: 0 to 800 Default Setting: 100	Speed/Torque Control, Position Control

Set the torque limits when the torque is limited by an external contact input.

Signal	DESCRIPTION
CN1-45 Input	Pn404 torque limit applied.
CN1-46 Input	Pn405 torque limit applied.

See Chapter 7.2.9 "Torque Limiting by Analog Voltage Reference".

Using CN1-45 and /CN1-46 Signals

The procedure for using CN1-45 and CN1-46 as torque limit input signals is illustrated below.

7.2 Settings According to Host Controller

This section describes the procedure for connecting a XtraDrive Series servo to a host controller, including the procedure for setting related parameters.

7.2.1 Speed Reference

Input the speed reference using the input signal: Speed Reference Input. Since this signal has various uses, set the optimal reference input for the system created.

The above inputs are used for speed control (analog reference). (Pn000.1 = 0, 4, 7, 9, or A.) Always wire for normal speed control.

Refer to *Chapter 9.1.6 "Operation in Monitor Mode"*. The motor speed is controlled in proportion to the input voltage between V-REF and SG.

Chapter 7

79

Pn300 = 600: This setting means that 6V is equivalent to the rated motor s					
Speed Reference	ROTATION	MOTOR SPEED	SGMAH Servo		
INPUT	DIRECTION	WOTOR SPEED	MOTOR		
+6V	Forward rotation	Rated motor speed	3000rpm		
+1V	Forward rotation	(1/6) rated motor speed	500rpm		
-3V	Reverse rotation	(1/2) rated motor speed	1500rpm		

Setting Examples

Pn300 = 600. This sotting r +h peed.

Parameter Pn300 can be used to change the voltage input range.

Input Circuit Example

Always use twisted pair cable for noise control.

Recommended variable : Model 25HP-10B manufactured by Sakae Tsushin Kogyo Co., Ltd.

Connect V-REF and SG to the speed reference output terminals on the host controller when using a host controller, such as a programmable controller, for position control.

Adjust Pn300 according to the output voltage specifications of the host controller.

Aujust the speed reference input aujustment factor in the following parameter	Adjust the sp	beed reference	e input ad	ljustment	factor in	the follo	wing parame
---	---------------	----------------	------------	-----------	-----------	-----------	-------------

PARAMETER	SIGNAL	Setting	CONTROL MODE
Pn300	Speed Reference Input Adjustment Factor	Range: 150 to 3000 x (0.01V/ rated motor speed) Default Setting: 600	Speed Control

Set the voltage range for the V-REF speed reference input at CN1-5 according to the host controller and external circuit output range.

The default setting is adjusted so that a 6V input is equivalent to the rated motor speed of all applicable servo motors.

NOTE: The maximum allowable voltage to the speed reference input (between CN1-5 and 6) is \pm 12VDC.

Using the CN1-41 Signal

⇒ Input CN1-41	Proportional Control Reference	Speed Control, Position Control
----------------	-----------------------------------	------------------------------------

The CN1-41 input signal switches the Speed Control mode from PI (proportionalintegral) to P (proportional) control.

Proportional control can be used in the following two ways:

- When an operation is performed by sending speed references from the host controller to the servo amplifier, the host controller can selectively use the P control mode for particular conditions only. This method can prevent the occurrence of overshoot and also shorten settling time.
- If PI control mode is used when the speed reference has a reference offset, the motor may rotate at a very slow speed and fail to stop even if 0 is specified as speed reference. In this case, use the P control mode to stop the motor.

7.2.2 POSITION REFERENCE

The reference pulse, reference code, and clear inputs are used for the position reference. Since this signal can be used in different ways, set the optimal reference input for the system created.

Any of the following forms can be used for the position reference:

- Line-driver output
- +12V open-collector output
- +5V open-collector output

Connection Example 1: Line-driver Output

Applicable line driver: SN75174, manufactured by Texas Instruments Inc., MC3487 or equivalent. Host controller

Connection Example 2: Open-Collector Output

Host controller **XtraDrive** Vcc Photocoupler R1 CN1 **50**Ω PULS Ρ /PULS CN1-8 Tr1 R1 CN1 SIGN Ρ /SIGN CN 1 R1 🚺 CLR CN1 Ρ /CLR CN 1 P: Indicates twisted-pair wires.

Set limiting R1 so that input current I falls within the following range:

The examples below show how to select the pull-up R1 so that the input current I falls between 7 and 15mA.

APPLICATION EX	$\mathbf{KAMPLES OF V} = \mathbf{IR}$
R1 = 1k Ω with V _{cc} = 12V ±5%	R1 = 180 Ω with V _{cc} = 5V ±5%

NOTE: The following table shows the signal logic for an open-collector output.

Tr1 Output Level	SIGNAL LOGIC
ON	Equivalent to high-level input
OFF	Equivalent to low-level input

This circuit uses the 12V power supply built into the servo amplifier. The input is not isolated in this case.

NOTE: The noise margin of the input signal will decrease if the reference pulse is provided by an open-collector output. Set parameter Pn200.3 to 1 if the position drifts due to noise.

Selecting a Reference Pulse Form

Use the following parameters to select the reference pulse form used.

⇒ Input PULS CN1-7	Reference Pulse Input	Position Control
⇔ Input /PULS CN1-8	Reference Pulse Input	Position Control
⇒ Input SIGN CN1-11	Reference Code Input	Position Control
⇒ Input /SIGN CN1-12	Reference Code Input	Position Control

The servo motor only rotates at an angle proportional to the input pulse.

PARAMETER	SIGNAL	SETTING RANGE	Control Mode
Pn200.0	Reference Pulse Form	Default Setting: 4	Position Control

Set reference pulse form input to the servo amplifier from the host controller.

NOTE: This function works only with a Pulse Reference, not with a Serial Command.

Since the reference pulse form can be selected from among those listed below, set one according to host controller specifications.

Parameter Pn200.0	Reference Pulse Form	Input Pulse Multiplier	Logic	Forward Rotation Reference	Reverse Rotation Reference
0	Sign + pulse train			PULS	PULS (CN1-7) SIGNLow (CN1-11)
1	CW pulse + CCW pulse		Positive	PULSLow (CN1-7) SIGN (CN1-11)	PULS (CN1-7) SIGNLow (CN1-11)
2	Two-phase	x1		⊌ ⊲ 90°	^{90°}
3	with 90°	x2		PULS	PULS
4	differential	x4		(CN1-11)	(CN1-11)
5	Sign + pulse train			PULS (CN1-7) SIGNLow (CN1-11)	PULS (CN1-7) SIGN High (CN1-11)
6	CW pulse + CCW pulse		Negative	PULSHigh (CN1-7)High SIGN (CN1-11)	PULS (CN1-7) SIGN High (CN1-11)
7	Two-phase	x1		90°	90°
8	pulse train with 90°	x2		PULS	PULS
9	differential	x4		(CN1-11)	(CN1-11)

Input Pulse Multiplier

The input pulse multiplier function can be used if the reference pulse is a two-phase pulse train with a 90° phase differential. The electronic gear function can also be used to convert input pulses.

turned ON until a reference pulse is entered must be a minimum of 40ms.2. The error counter clear signal must be ON for at least 20μs.

REFERENCE PULSE Form	ELECTRICAL SPECIFICATION	S	REMARKS
Sign + pulse train input (SIGN + PULS signal) Maximum reference frequency: 500kpps (200kpps open-collector output)	SIGN 13 +++ PULS 14 + Forward reference reference reference	†1,†2≦0.1μs †3,†7≦0.1μs †4,†5,†6>3μs τ≧1.0μs (τ/T)×100 ≦ 50%	Sign (SIGN) H = Forward reference L = Reverse reference
CW pulse and CCW pulse Maximum reference frequency: 500kpps (200kpps open-collector output)	$CCW \xrightarrow{+}_{12+} + \underbrace{+}_{2} + +$	†1,†2≦0.1µs †3>3µs τ≧1.0µs (τ/T)×100≦50%	
Two-phase pulse train with 90° phase differential (A phase + B phase) Maximum reference frequency x1: 500kpps (200kpps open-collector output) x2: 400kpps x4: 200kpps	A phase B phase Forward Forward B phase leads A phase by 90° A phase by 90°	t1,t2≦0.1µs τ≧1.0µs (τ/T)x100=50%	Parameter Pn200.0 is used to switch the input pulse multiplier mode.

Reference Pulse Input Signal Timing

Chapter 7

Error Counter Clear Input

The procedure for clearing the error counter is described below.

⇒ Input CLR CN1-15	Clear Input	Position Control
⇒ Input /CLR CN1-14	Clear Input	Position Control

The following occurs when the CLR signal is set to high level.

- The error counter inside the servo amplifier is set to 0.
- Position loop control is prohibited.

Use this signal to clear the error counter of the host controller or select the following clear operation through parameter Pn200.1.

PARAMETER	SIGNAL	Setting Range	CONTROL MODE
Pn200.1	Error Counter Clear Signal Form	Default Setting: 0	Position Control

Select the pulse form for the error counter clear signal CLR (CN1-15).

Pn200.1 Setting	DESCRIPTION	CLEAR TIMING
0	Clears the error counter when the CLR signal goes high.	CLR High (CN1-15)
0	Error pulses do not accumulate as long as the signal remains high.	Cleared state
1	Clears the error counter on the rising edge of the CLR signal.	CLR High (CN1-15) Δ
1	Clears the error counter only once on the rising edge of the CLR signal.	Cleared only once at this point
2	Clears the error counter when the CLR signal goes low. Error pulses do not accumulate as long as the signal remains low.	CLR Low (CN1-15) Cleared state
3	Clears the error counter on the falling edge of the CLR signal. Clears the error counter only once on the falling edge of the CLR signal.	CLR Low (CN1-15) Δ Cleared only once at this point

7.2.3 Using the Encoder Signal Output

Encoder output signals are divided inside the servo amplifier and can be output externally. These signals can be used to form a position control loop in the host controller.

The output circuit is for line-driver output. Connect each signal line according to the following circuit diagram.

- P: Indicates twisted-pair wires.
- Note: Dividing means converting an input pulse train from the encoder mounted on the servo motor according to the preset pulse density and outputting the converted pulse. The units are pulses per revolution (PPR).

I/O Signals

I/O signals are described below.

Output ⇒ PAO CN1-33	Encoder Output Phase A	Speed/Torque Control, Position Control
Output ⇒ /PAO CN1-34	Encoder Output Phase /A	Speed/Torque Control, Position Control
Output ⇒ PBO CN1-35	Encoder Output Phase B	Speed/Torque Control, Position Control
Output	Encoder Output Phase /B	Speed/Torque Control, Position Control
Output ⇒ PCO CN1-19	Encoder Output Phase C	Speed/Torque Control, Position Control
Output ⇒ /PCO CN1-20	Encoder Output Phase /C	Speed/Torque Control, Position Control

Divided encoder signals are outputs; therefore always connect these signal terminals when a position loop is formed in the host controller for position control.

Set a dividing ratio using the following parameter: PG Dividing Ratio Pn201

The dividing ratio setting is not related to the gear ratio setting (Pn202 and 203) for the servo amplifier electronic gear function during position control.

Output Phase Form

⇒ Input SEN CN1-4	SEN Signal Input	Speed/Torque Control
⇒ Input /SEN CN1-2	Signal Ground	Speed/Torque Control
⇔ Output PSO CN1-48	Encoder Output Phase S	Speed/Torque Control, Position Control
⇔ Output /PSO CN1-49	Encoder Output Phase /S	Speed/Torque Control, Position Control
⇒ Input BAT (+) CN1-21	Battery (+)	Speed/Torque Control, Position Control
⇒ Input /BAT (-) CN1-22	Battery (-)	Speed/Torque Control, Position Control

Use SEN to BAT (-) signals for absolute encoders. See 7.8 "Absolute Encoders" for more details.

Output \Rightarrow SG CN1-1Signal groundSpeed/Torque Control, Position Control
--

SG: Connect to 0V on the host controller.

IMPORTANT

• When using the servo amplifier phase C pulse signal to return to the machine origin, always turn the servo motor at least twice before starting the original return operation.

If the configuration of the mechanical system prevents turning the servo motor before the origin return operation, then perform the origin return operation at a servo motor speed of 600rpm or below. The phase C pulse signal may not be correctly applied if the servo motor turns faster than 600rpm.

Pulse Divider Setting

Set the pulse dividing ratio in the following parameter:

PARAMETER	SIGNAL	Setting (PPR)	Control Mode
Pn201	PG Divider	Range: 0 to 65535 Default Setting: 2048	Speed/Torque Control, Position Control

Serial Encoder

Set the number of pulses for PG output signals (PAO, /PAO, PBO, /PBO).

Pulses from the servo motor encoder (PG) are divided by the preset number before being output.

The number of output pulses per revolution is set by this parameter. Set the value using the reference units of the equipment or the controller used.

The setting range varies with the encoder used.

1 revolution

RESOLUTION (BITS)	Number of Encoder Pulses Per Revolution (PPR)	Setting Range
13	2048	16 to 2048
16	16384	16 += 16294
17		10 10 10384

NOTE: 1. Turn OFF power once and turn ON again after changing the parameter.

2. A 13-bit encoder will run at 2048PPR even if the setting at Pn201 is set higher than 2049.

A quad B Encoder - Setting of the pulse-dividing ratio.

$$Pn201 = \frac{PGout \times 65536}{Pn192 \times 4}$$

PGout - number of required out pulses per revolution.

Example: 1000 counts per revolution needed using 8000 counts encoder

$$Pn201 = \frac{65536 \times PGout}{Counts} = \frac{65536 \times PGout}{Pn192 \times 4} = \frac{65536 \times 1000}{8000} = 8192$$

NOTE: If a 1:1 ratio (for each incoming pulse, one output pulse generated) is required, set Pn201=0.

7.2.4 **P**ROGRAMMABLE I/O SIGNALS

Programmable I/O signals are used to control servo amplifier operation. Connect these signal terminals as required.

Input Signal Connections

Connect the programmable input signals as shown below.

Note: IN6 is a high speed input

NOTE: Provide a separate external I/O power supply; the servo amplifier does not have an internal 24V power supply.
 External power supply specifications: 24V ±1 VDC, 50mA minimum.
 Yaskawa recommends using the same type of external power supply as the one used for output circuits.

The function allocation for programmable input signal circuits can be changed.

⇒ Input +24VIN CN1-47	External I/O Power Supply Input	Speed/Torque Control, Position Control
-----------------------	---------------------------------	---

The external power supply input terminal is common to programmable input signals.

Connect an external I/O power supply.

89

Output Signal Connections

Connect the programmable output signals as shown in the following figure.

NOTE: Provide a separate external I/O power supply; the servo amplifier does not have an internal 24V power supply. It is recommended to use the same type of external power supply as the one used for input circuits.

Function allocation for some programmable output signal circuits can be changed.

See Chapter 7.4 "Output Circuit Signal Allocation" for more details.

USING THE ELECTRONIC GEAR FUNCTION

The electronic gear function enables the *servo motor travel distance per input reference pulse* to be set to any value. It allows the pulses generated by the host controller to be used for control without having to consider the equipment gear ratio or the number of encoder pulses.

Setting the Electronic Gear (for Reference Pulses)

Calculate the electronic gear ratio (B/A) using the following procedure, and set the values in parameters Pn202 and 203.

- 1. Check equipment specifications related to the electronic gear:
 - Deceleration ratio
 - Ball screw pitch
 - Pulley diameter

	Ball screw pitch	
╡	Deceleration ratio	

Eucoper Ture	NUMBER OF ENCODER PULSES		
ENCODER I YPE	PER REVOLUTION (PPR)		
Incremental encoder	13-bit	2048	
	16-bit	16384	
	17-bit	32768	
Absolute encoder	16-bit	16384	
	17-bit	32768	

NOTE: The number of bits representing the resolution of the applicable encoder is not the same as the number of encoder signal pulses (A and B phase) output from the servo amplifier.

2. Determine the reference unit used.

A reference unit is the minimum position data unit used to move a load (minimum unit of reference from the host controller).

EXAMPLES (IN MM):

- Reference unit can be 0.1in or 0.01in or 0.01mm or 0.001mm, etc. A reference unit of one pulse moves the load by one reference unit.
- When the reference unit is 1µm If a reference of 50000 units is input, the load moves 50mm (1.97in) (50000 • 0.001mm = 50mm).

3. Determine the travel distance per load shaft revolution in reference units.

Travel distance per load shaft revolution = $\frac{\text{Travel distance per load shaft revolution}}{\text{Reference Unit}}$

• When the ball screw pitch is 0.20in (5mm) and the reference unit is 0.00004in (0.001mm),

 $\frac{0.20}{0.00004} = 5000 \text{ (reference units)}$

Ball Screw	Disc Table	Belt and Pulley
Load shaft P P: Pitch 1 figurerevolution = $\frac{P}{referencefigureunit}$	Load shaft 1figurerevolution= 360° reference unit	Load shaft <u>mD</u> D: Pulley 1revolution= <u>mD</u> reference unit

4. Electronic gear ratio is given as: $\left(\frac{B}{A}\right)$

If the gear ratio of the motor and the load shaft is given as: $\frac{m}{n}$ where m is the rotation of the motor and n is the rotation of the load shaft,

Electronic gear ratio
$$\left(\frac{B}{A}\right) = \frac{\text{Number of encoder pulses x 4}}{\text{Travel distance per load shaft revolution (reference unit)}} \times \frac{m}{n}$$

Note: Make sure the electronic gear ratio satisfies the following condition:

 $0.01 \le \text{Electronic gear ratio} \left(\frac{B}{A}\right) \le 100$

The servo amplifier will not work properly if the electronic gear ratio exceeds this range. In that case, modify either the load configuration or the reference unit.
5. Set the parameters.

Reduce the electronic gear ratio to lower terms so that both A and B are integers smaller than 65535, then set A and B in the respective parameters:

$\left(\frac{B}{A}\right)$	Pn202	Electronic Gear Ratio (Numerator)
	Pn203	Electronic Gear Ratio (Denominator)

PARAMETER	SIGNAL	Setting	CONTROL MODE	
Dn202	Electronic Gear Ratio	Range: 1 to 65535	Desition Control	
F 11202	(Numerator)	Default Setting: 1	Position Control	
D. 202	Electronic Gear Ratio	Range: 1 to 65535	Desition Control	
Pn203	(Denominator)	Default Setting: 1	Position Control	

Set the electronic gear ratio according to equipment specifications.

Electronic Gear Ratio = $\left(\frac{B}{A}\right) = \frac{Pn202}{Pn203}$

- B = [(Number of encoder pulses) x 4] x [motor speed]
- A = [Reference units (travel distance per load shaft revolution)] **x** [load shaft revolution speed]

Electronic Gear Setting Examples

The following examples show electronic gear settings for different load mechanisms.

Ball Screws Travel distance per load shaft revolution = $\frac{0.24in}{0.00004in}$ = Reference unit: 0.001mm Load shaft 6000 777 $\left(\frac{B}{A}\right)$ $=\frac{2048\,x\,4\,x\,1}{6000}$ Pn202 Electronic gear ratio = Ball screw pitch: 6mm (0.24in) 13-bit incremental Pn203 encoder Pn202 8192 Preset Values Pn203 6000

Control Block Diagram

The following diagram illustrates a control block for position control.

Chapter 7

7.2.6

CONTACT INPUT SPEED CONTROL

This function provides a method for easy speed control. It allows the user to initially set three different motor speeds with parameters, and then select one of the speeds externally using a contact input.

Using Contact Input Speed Control

Follow steps 1 to 3 below to use the contact input speed control function.

1. Set contact input speed control as shown below.

PARAMETER	SIGNAL	Setting	CONTROL MODE
Pn000.1	Control Mode Selection	Default Setting: 0	Speed/Torque Control, Position Control

The speed can be controlled via contact inputs.

Pn000.1 Setting	Description	Input Signal			
0.0.7.0	Input contacts. Speed control Is function not used.	(CN1-41)		Used to switch between P and PI control.	
9, A, B, C, D		(CN1-45)		Used to switch between forward external torque limit ON and OFF.	
		(CN1-46)		Used to switch between reverse external torque limit ON and OFF.	
	Input contacts. Speed control function is used.	(/SPD-D)	(/SPD-A)	(/SPD-B)	Speed setting
		Direction of rotation 0: Forward 1: Reverse	0	0	0 reference etc.
3, 4, 5, 6			0	1	SPEED 1 (Pn301)
			1	1	SPEED 2 (Pn302)
			1	0	SPEED 3 (Pn303)

Meanings for the following signals change when the contact input speed control function is used:

- **NOTE:** 1. 0: OFF (high level); 1: ON (low level)
 - **2.** CN1-41, CN1-45 and CN1-46 functions differ from those in the table above when Pn000.1 is set to 3, 4, 5, or 6. The function is switched automatically when Pn50A. 0 is set to 0.
 - **3.** The /SPD-D, /SPD-A, and /SPD-B signals can be used only when signals are allocated to the input circuits.
 - 2. Set the motor speeds using the following parameters.

PARAMETER	SIGNAL	SETTING (RPM)	CONTROL MODE
Pn301	Speed 1 (SPEED 1) (Contact Input Speed Control)	Range: 0 to 10000 Default Setting: 100	Speed Control
Pn302	Speed 2 (SPEED 2) (Contact Input Speed Control)	Range: 0 to 10000 Default Setting: 200	Speed Control
Pn303	Speed 3 (SPEED 3) (Contact Input Speed Control)	Range: 0 to 10000 Default Setting: 300	Speed Control

These parameters are used to set motor speeds when the contact input speed control function is selected. If the setting is higher than the maximum motor speed of the servo motor, then the servo motor will rotate at its maximum speed.

Speed selection input signals (SPD-A)(CN1-45) and (/SPD-B) (CN1-46) and the rotation direction selection signal (/SPD-D)(CN1-41) enable the servo motor to run at the preset speeds.

3. Set the soft start time.

PARAMETER	SIGNAL	Setting (rpm)	Control Mode
Pn305	Soft Start Acceleration Time	Setting Range: 0 to 10000 Default Setting: 0	Speed Control
Pn306	Soft Start Deceleration Time	Setting Range: 0 to 10000 Default Setting: 0	Speed Control

The servo amplifier internal speed reference controls the speed by applying this acceleration setting.

Pn306 Sets this time interval

Smooth speed control can be performed by entering a progressive speed reference or using contact input speed control. Set each constant to 0 for normal speed control.

Set each parameter to the following time intervals.

- Pn305: Time interval from when the servo motor starts until it reaches maximum speed.
- Pn306: Time interval from when the servo motor reaches maximum speed until it stops.

Operation By Contact Input Speed Control

The following describes operation by contact input speed control.

Start and Stop

The following input signals are used to start and stop the servo motor.

⇒ Input CN1-45	Speed Selection 1 (Forward External Torque Limit Input)	Speed/Torque Control, Position Control
⇒ Input CN1-46	Speed Selection 2 (Reverse External Torque Limit Input)	Speed/Torque Control, Position Control

NOTE: Position Control is used here only by Pulse Reference, not by Serial Command.

CONTACT SIGNAL		PARAMETER		
/SPD-D	/SPD-A	/SPD-B	PN000.1	Selected Speed
	0	0	3	Stopped by an internal speed reference of 0.
			4	Analog speed reference (V- REF) input
-			5	Pulse reference input (position control)
			6	Analog torque reference input (torque control)
Direction	0	1		SPEED 1 (Pn301)
of rotation 0: Forward 1: Reverse	1	1	3, 4, 5, 6,	SPEED 2 (Pn302)
	1	0	Common	SPEED 3 (Pn303)

Use the following table when contact input speed control is used.

NOTE: 1. 0: OFF (high level); 1: ON (low level)

2. Input signals indicated by the horizontal bar (-) are optional.

When contact input speed control is not used, input signals are used as external torque limit inputs.

Note: The contact input speed control function is used only when signals are allocated to /SPD-D, /SPD-A, and /SPD-B.

Selection of Rotation Direction

The input signal /SPD-D is used to specify the direction of servo motor rotation.

⇔ Input CN1-41	Speed Selection 1 (Forward External Torque Limit Input)	Speed/Torque Control, Position Control
----------------	---	---

• When contact input speed control is used, the input signal /SPD-D specifies the direction of servo motor rotation.

/SPD-D INPUT LEVEL	SIGNAL LOGIC
0	Forward rotation
1	Reverse rotation

NOTE: 0: OFF (high level); 1: ON (low level)

- When contact input speed control is not used, the /SPD-D signal is used for proportional control, zero clamping, and torque/speed control switching.
- Position Control is used here only by Pulse Reference, not by Serial Command.

Chapter 7

The following example shows operation by contact input speed control. Using the soft start function reduces physical shock when the speed is changed.

Note: The soft start function is available only when contact input speed control is used with Pn000.1 set to 5. It is not available when a pulse reference input is used. If the Contact Input Speed Control mode is switched to Pulse Reference Input mode while the servo motor is operating at speed 1, speed 2, or speed 3, the servo amplifier will not receive a reference pulse until the positioning completed signal (/COIN) is output. Always start pulse reference output from the host controller after a positioning completed signal is output from the servo amplifier.

Signal Generation Timing for Position Control

t1 > 2ms

- **NOTE:** 1. The above figure illustrates signal generation timing when the soft start function is used.
 - **2.** The value of t1 is not affected by the use of the soft start function. A maximum 2ms delay occurs when the /SPD-A or /SPD-B signal is read.

99

7.2.7 Using Torque Control

The XtraDrive servo amplifier limits torque as shown below.

- Level 1: Limits maximum output torque to protect equipment or workpiece.
- Level 2: Limits torque after the servo motor moves the equipment to a specified position (external torque limit).
- Level 3: Controls torque output rather than speed output.
- Level 4: Switches between speed and torque control.

The following describes uses for levels 3 and 4 in the torque control function.

Set the following parameter to select the type of control described in levels 3 and 4.

Torque Control Selection

PARAMETER	SIGNAL	Setting	CONTROL MODE
Pn000.1	Control Method Selection	Default Setting: D	N CT Programming Mode

For further explanation of settings, see Appendix C 4.1 "Home Switches".

A torque reference is entered from the host controller to the servo amplifier in order to control torque.

Application Examples

- Tension control
- Pressure control

Pn000.1	Control Mode				
	Speed Control: When CN1-41 is ON Set the parameter Pn002.0 as shown below.				
	ParameterSPn002.0InState(0)	peed Reference nput (V-REF) CN1-5,6)	Torque Reference Input (T-REF) (CN1-9,10)	Comments	
	$0 \frac{S}{S}$	peed Control	Cannot be used.	-	
9	1 T	Forque limit speed oltage reference peed Reference	control by analog Torque Limit	See 7.2.9 for more details on torque limit speed control by analog voltage	
	S	peed control with	torque feed-forward	See 7.2.8 Torque Feed-	
	2 S	peed reference	Torque feed- forward	Forward Function for more details on torque feed-forward speed control.	
8	Position Control ⇔ Can be used to switc • CN1-41 is used to CN1-41 State Open 0V	Torque Control ch between speed (control. switch control. Selects Position Control. Torque Control.	tact reference) and torque	e control.	
	Can be used to swite • CN1-45 and CN	tact Reference) ch between speed (con 1-46 are used to sv	 Torque Control (tact reference) and torque vitch control. 	e control.	
	Parameter	Parameter			
	State	State			
6	0	0	Torque Contro	ol	
	0	1	Speed Control		
	1	1	(Contact refer	ence)	
		0			

NOTE: Input signal /C-SEL can be used only when a signal is allocated to the input circuit.

103

Input Signals

Torque Reference Inputs

The following input signals are used for torque control.

⇒ Input T-REF CN1-9	Torque Reference Input	Speed/Torque Control
⇒ Input SG CN1-10	Signal Ground for the Torque	Speed/Torque Control
, mpur be entrino	Reference Input	speed longue control

These signals are used when torque control is selected.

Servo motor torque is controlled so that it is proportional to the input voltage between T-REF and SG.

Parameter Pn400 establishes the voltage level that applies rated torque.

For example:

WITH PN400 = 30		
VIN (V) RESULTING APPLIED TORQUE		
+3	100% of rated torque in forward direction	
+9	300% of rated torque in forward direction	
-0.3	10% of rated torque in reverse direction	

Example of an Input Circuit

Speed Reference Inputs

Refer to Section 7.2.1 Speed Reference.

Using the CN1-41 Signal

⇒ Input CN1-41	Proportional Control Reference, etc.	Speed/Torque Control, Position Control
----------------	--------------------------------------	---

The function of the input signal CN1-41 varies with the setting applied to Pn000.1.

PN000.1 SETTING	CN1-41 FUNCTION	
0, C, D	Switches between P (proportional) and PI (proportional-integral) control.	
2	Not used.	
3, 4, 5, 6	Switches the direction of rotation in Contact Input Speed Control mode.	
7, 8, 9	Switches the control mode.	
А	Turns ON/OFF zero clamp.	
В	Turns inhibit ON/OFF.	

NOTE: The CN1-41 signal function switches automatically when Pn50A.0 is set to 0.

Torque Control Parameter

The following parameter is used for torque control. Set the parameter according to requirements of the servo system that is used.

PARAMETER	Signal	Setting (0.1V X Rated Toroue)	CONTROL MODE
Pn400	Torque Reference	Setting Range: 10 to 100	Speed/Torque
	Input Gain	Default Setting: 30	Control

This parameter sets the voltage range for torque reference input T-REF (CN1-9) depending on the output range of the host controller or external circuit.

The default setting is 30, so the rated torque output is equal to $3V (30 \times 0.1)$.

PN002.1 SETTING	DESCRIPTION
0	Uses speed limit set by Pn407 (internal speed limit function).
1	Uses V-REF (Cn1-5 and -6) as external speed limit input and sets speed limit by voltage, which are input to V-REF and Pn300 (external speed limit function).

Internal Speed Limit Function

PARAMETER	SIGNAL	Setting (rpm)	CONTROL MODE
Pn407	Speed Limit during	Setting Range: 0 to 10000	Speed/Torque
	Torque Control	Default Setting: 10000	Control

This parameter sets a motor speed limit when torque control is selected. It is used to prevent excessive equipment speed during torque control.

Since the speed limit detection signal /VLT functions the same in torque control as the /CLT signal, see *Chapter 7.1.3 "Limiting Torque*," where the /CLT signal is described.

External Speed Limit Function:

The maximum speed of the servo motor will be used if Pn407 is set to a value higher than the maximum speed of the servo motor.

This function sets the voltage range for speed reference input V-REF (CN1-5) according to the output range of the host controller or external circuit. When the default setting (600) is multiplied by 0.01V, the result (6V) corresponds to the rated motor speed.

PARAMETER	SIGNAL	Setting	CONTROL MODE
Pn300	Speed Reference Input Gain	Setting Range: 150 3000 (0.01V/ rated motor speed) Default Setting: 600	Speed/Torque Control

The default setting is 6V = the rated motor speed.

Principle of Speed Limit

When the control speed range is exceeded, the torque, which is inversely proportional to the difference between the speed limit and the actual speed, is fed back in order to return the system to a level within the control speed range. In effect, the actual motor speed limit depends on the load condition.

7.2.8

TORQUE FEED-FORWARD FUNCTION

The torque feed-forward function is used only in speed control (analog reference). This function is used to:

- Shorten positioning time
- Differentiate a speed reference at the host controller to generate a torque feed-forward reference
- Input this reference together with the speed reference to the servo amplifier

Too high a torque feed-forward value will result in an overshoot or an undershoot. To prevent this, set the optimal value while closely observing the system response.

Connect a speed reference signal to V-REF (CN1-5 and 6) and a torque feed-forward reference signal to T-REF (CN1-9 and 10).

Chapter 7

107

K_{FF}: Feed-forward gain

Using the Torque Feed-Forward Function

PARAMETER	SIGNAL	Setting	CONTROL MODE
Pn002.0	Speed Control Option (T-REF Terminal Allocation)	Default Setting: 0	Speed/Torque Control

To use the torque feed-forward function, set the following parameter to 2.

This setting enables the torque feed-forward function.

Pn002.0 Setting	T-REF FUNCTION
0	None.
1	T-REF terminal used for external torque limit input.
2	T-REF terminal used for torque feed-forward input.

The torque feed-forward function cannot be used with the torque limiting by analog voltage reference function described in *Chapter 7.2.9 "Torque Limiting by Analog Voltage Reference"*.

Setting

Torque feed-forward is set using parameter Pn400.

The default setting at Pn400 is 30. If, for example, the torque feed-forward value is $\pm 3V$, then the torque is limited to $\pm 100\%$ of the rated torque.

PARAMETER	SIGNAL	Setting (0.1V/Rated Torque)	CONTROL MODE
Pn400	Torque Reference Input Adjustment Factor	Setting Range: 10 to 100 Default Setting: 30	Speed/Torque Control

7.2.9 TORQUE LIMITING BY ANALOG VOLTAGE REFERENCE

Torque limiting by analog voltage reference limits the torque by assigning a torque analog voltage to the T-REF terminal (CN1-9 and 10). It cannot be used for torque control because the torque reference input terminal T-REF is used as an input terminal.

The torque is limited at the forward run side when the P-CL signal turns ON and at the reverse run side when the N-CL signal turns ON.

Using Torque Limiting by Analog Voltage Reference

To use this function, set the following parameter to 3:

PARAMETER	Signal	Setting (rpm)	Control Mode
Pn002.0	Speed Control Option (T-REF Terminal Allocation)	Default Setting: 0	Speed Control, Position Control

This parameter can be used to enable torque limiting by analog voltage reference.

PN002.0 SETTING	T-REF FUNCTION	
0	None.	
1	T-REF terminal used for external torque limit input.	
2	T-REF terminal used for torque feed-forward input.	
3	T-REF terminal used for external torque limit input when P-CL and N-CL are valid.	

This function cannot be used with the torque feed-forward function described in 7.2.8 *"Torque Feed-Forward Function"*.

|--|

To use this function, verify how input signals have been allocated. The following table outlines factory default settings.

INPUT SIGNAL	SIGNAL LEVEL	DESCRIPTION	Comments
	CN1-45 is at "L" level when ON	Torque is limited at the forward run side.	Limit value: either Pn404 or T-REF input, whichever is smaller.
CN1-45	CN1-45 is at "H" level when OFF Torque is not limited at the forward run side. Normal Operation		
	CN1-46 is at "L" level when ON	Torque is limited at the reverse run side.	Limit value: either Pn405 or T-REF input, whichever is smaller.
CN1-46	CN1-46 is at "H" level when OFF	H" level Torque is not limited at the forward run side. — Normal operation.	

Setting

The torque limit is set using parameter Pn400.

The default setting for Pn400 is 30. If, for example, the torque limit is ± 3 V, then torque is limited to 100% of the rated torque. (A torque value higher than 100% torque is clamped at 100%.)

PARAMETER	Signal	Setting (0.1V/Rated Torque)	Control Mode
Pn400	Torque Reference Input Adjustment Factor	Setting Range: 10 to 100 Default Setting: 30	Speed/Torque Control

When either the P-CL or the N-CL signal is turned ON, the following torque limits become valid simultaneously.

PARAMETER	SIGNAL	Setting (0.1V/R ated Torque)	CONTROL MODE
Pn404	Forward Run Side External Torque Limit	Setting Range: 0 to 800 Default Setting: 100	Speed/Torque Control, Position Control
Pn405	Reverse Run Side External Torque Limit	Setting Range: 0 to 800 Default Setting: 100	Speed/Torque Control, Position Control

7.2.10 **Reference Pulse Inhibit Function** (/inhibit)

This function inhibits the servo amplifier from counting input reference pulses during position control. The servo motor remains locked (clamped) while the function is in use. The CN1-41(/INHIBIT) signal is used to enable or disable the function.

Using Reference Pulse Inhibit Function (/INHIBIT)

To use the inhibit function, set the parameter as shown below.

PARAMETER	SIGNAL	Setting (rpm)	CONTROL MODE
Pn000.1	Control Method Selection	Default Setting: 0	Position Control

The following settings enable the inhibit function.

PN000.1 Setting		DESCRIPTION	
С	Enables the inhibit function. Always counts reference pulses.		
	Enables the inhibit function. The CN1-41 (/INHIBIT) signal is used to enable disable the inhibit function.		
	CN1-41 (/INHIBIT)	Description	
В	OFF	Counts reference pulses.	
	ON	Prohibits the servo amplifier from counting reference pulses.	
		The servo motor remains locked.	

NOTE: Parentheses () around an /INHIBIT signal indicate that a signal has been allocated to the input circuit.

See Chapter 7.3 "Input Signal Allocation" for more details.

.	_	_
Cha	ntor	7
Gila	NICI	_

Relationship between Inhibit Signal and Reference Pulses

The following parameter is used to enable input signal allocation.

PARAMETER	SIGNAL	Setting	CONTROL MODE
Pn50A.0	Input Signal Allocation Mode	Default Setting: 1	Speed/Torque Control, Position Control

Pn50A.0 Setting	DESCRIPTION
0	Default setting for programmable input signal allocation.
1	Enables any programmable input signal settings.

NOTE: The default setting for parameter Pn50A.0 is 0. Functions and applications in this manual are generally described for the factory defaults.

7.3

INPUT CIRCUIT SIGNAL ALLOCATION

The following signal can be allocated when Pn50A.0 is set to 1.

The following table shows the parameter default settings for input settings 1 to 4.

PARAMETER	Signal	Setting	Description
Pn50A	Input Signal Selection 1	Default Setting: 8881	Speed/Torque Control, Position Control
Pn50B	Input Signal Selection 2	Default Setting: 8888	Speed/Torque Control, Position Control
Pn50C	Input Signal Selection 3	Default Setting: 8888	Speed/Torque Control, Position Control
Pn50D	Input Signal Selection 4	Default Setting: 8888	Speed/Torque Control, Position Control

Select the input terminal on the CN1 connector that will be used for all input signals.

Chapter 7

Examples of Input Signal Allocation

The procedure used to allocate programmable input signals is described using the /S-ON signal as a typical example.

Pn50A.1 Setting	DESCRIPTION	
0	Inputs the /S-ON signal from the SI0 (CN1-40) input terminal.	
1	Inputs the /S-ON signal from the SI1 (CN1-41) input terminal.	
2	Inputs the /S-ON signal from the SI2 (CN1-42) input terminal.	Normal.
3	Inputs the /S-ON signal from the SI3 (CN1-43) input terminal.	Servo ON signal
4	Inputs the /S-ON signal from the SI4 (CN1-44) input terminal.	is valid when low
5	Inputs the /S-ON signal from the SI5 (CN1-45) input terminal.	
6	Inputs the /S-ON signal from the SI6 (CN1-46) input terminal.	
7	Sets /S-ON signal so that it is always valid.	Set the Servo-ON signal (/S-ON) so
8	Sets /S-ON signal so that it is always invalid.	that it is always valid or always invalid.
9	Inputs the S-ON signal from the SI0 (CN1-40) input terminal.	
А	Inputs the/S-ON signal from the SI1 (CN1-41) input terminal.	Signal polarity:
В	Inputs the S-ON signal from the SI2 (CN1-42) input terminal.	Inversion.
С	Inputs the S-ON signal from the SI3 (CN1-43) input terminal.	(H level) with
D	Inputs the S-ON signal from the SI4 (CN1-44) input terminal.	ServoON signal
Е	Inputs the S-ON signal from the SI5 (CN1-45) input terminal.	
F	Inputs the/S-ON signal from the SI6 (CN1-46) input terminal.	

As shown in the table above, the /S-ON signal can be allocated to any input terminal from SI0 to SI6. /S-ON is always input when Pn50A.1 is set to 7, and an external signal line would therefore not be needed because the servo amplifier will determine whether the servo is ON or OFF.

The /S-ON signal is not used when Pn50A.1 is set to 8. This setting is meaningful only in the following instances.

- When the factory set input signal is to be replaced by another input signal.
- The signal must be left ON (low level) during normal operation to make the signal valid when OFF (high level) when forward run prohibit (P-OT) and reverse run prohibit (N-OT) are input. The input terminal signal line must be left ON even in system configurations that do not require this signal, but unnecessary wiring can be eliminated by setting Pn50A.1 to 8.
- By setting 9 to F, the signal polarity can be reversed.
- **Note:** Several signals can be allocated to the same input circuit. When the servo is ON, the forward run prohibit or reverse run prohibit signal is used. At a setting with inverted polarity, the failed safe operation may not be possible in the case of signal line disconnection.

113

Input signal allocation can be changed as shown below.						
INPUT SIGNAL		PARAMETER		DESCRIPTION		
NAME	Applicable Logic	Number	Setting			
			0	Inputs the specified signal from SI0 (CN1-40).		
			1	Inputs the specified signal from SI1 (CN1-41).		
			2	Inputs the specified signal from SI2 (CN1-42).		
			3	Inputs the specified signal from SI3 (CN1-43).		
			4	Inputs the specified signal from SI4 (CN1-44).		
			5	Inputs the specified signal from SI5 (CN1-45).		
			6	Inputs the specified signal from SI6 (CN1-46).		
Proportional Control Deference	ON	D=50A 2	7	Sets the specified signal to always enabled.		
(CN1 41)	(low level)	Ph50A.2	8	Sets the specified signal to always disabled.		
(CINI-41)	()		9	Inputs the specified inverse signal from SI0 (CN1-40).		
			A	Inputs the specified inverse signal from SI1 (CN1-41).		
			В	Inputs the specified inverse signal from SI2 (CN1-42).		
			<u> </u>	Inputs the specified inverse signal from SI3 (CN1-43).		
			D	Inputs the specified inverse signal from SI4 (CN1-44).		
			E	Inputs the specified inverse signal from SI5 (CN1-45).		
			F	Inputs the specified inverse signal from SI6 (CN1-46).		
Forward Run Prohibit (P-OT)	OFF	Pn50A.3	_			
Reverse Run Prohibit (N-OT)	(high level)	Pn50B.0				
Alarm Reset (/ARM-RST)	ON (low level)	Pn50B.1				
Forward Current Limit (CN1-45)		ON Pn50B.2 (low level)				
Reverse Current Limit (CN1-46)		Pn50B.3				
Contact Input Speed Control Selection (SPD-D)		Pn50C.0				
Contact Input Speed Control Selection (/SPD -A)	_	Pn50C.1	0 to F	Same as above.*		
Contact Input Speed Control Selection (/SPD-B)		Pn50C.2				
Control Mode Selection (/C-SEL)		Pn50C.3				
Zero Clamp (/ZCLAMP)	ON	Pn50D.0		NOTE: *Same as above" means that input		
Reference Pulse Inhibit (/INHIBIT)	(low level)	Pn50D.1		signals and terminals SI0 to SI6 are enabled or disabled through parameter settings 0 to 8.		
Gain Switching (/G-SEL)		Pn50D.2				

Allocating Other Input Signals

Chapter 7

7.4

OUTPUT CIRCUIT SIGNAL ALLOCATION

Output signal functions can be allocated to the programmable signal output circuits shown below.

Output Signal Allocation

CN1 Connector Terminal Numbers	Output Terminal Name	Programmable Outputs
25	501	1+
26 (SG)	501	1-
27	502	2+
28 (SG)	502	2-
29	503	3+
30 (SG)	505	3-

Output Signal Selection Default Settings

The output signal selection parameters and their default settings are shown below.

PARAMETER	Signal	Setting	DESCRIPTION
Pn50E	Output Signal Selections 1	Default Setting: 0000	Speed/Torque Control, Position Control
Pn50F	Output Signal Selections 2	Default Setting: 0000	Speed/Torque Control, Position Control
Pn510	Output Signal Selections 3	Default Setting: 0000	Speed/Torque Control, Position Control

Select the CN1 connector terminals that will output the signals

Allocating Other Output Signals

Output Signal	Parameter		Description	
Output Signal	Number	Setting	Description	
		0	Disabled. (Not used for the specified output signal.)	
Programmable Outputs	Pp50E 0	1	Outputs the specified signal from the SO1 (CN1-25 and 26) output terminal.	
	FIISOE.0	2	Outputs the specified signal from the SO2 (CN1-27 and 28) output terminal.	
		3	Outputs the specified signal from the SO3 (CN1-29 and 30) output terminal.	
Speed Coincidence Detection(/V -CMP)	Pn50E.1	0 to 3		
Rotation Detection (/TGON)	Pn50E.2	0 to 3		
Servo Ready (/S-RDY)	Pn50E.3	0 to 3		
Torque Limit Detection (/CLT)	Pn50F.0	0 to 3	Same as above. (Output signals are disabled or allocated to	
Speed Limit Detection (/VLT)	Pn50F.1	0 to 3	output terminals SO1 to SO3 through parameter settings 0 to 3).	
Brake Interlock (/BK)	Pn50F.2	0 to 3		
Warning(/WARN)	Pn50F.3	0 to 3		
Near(/NEAR)	Pn510.0	0 to 3		
Not used	_	_	_	

NOTE: Signals are output with OR logic when multiple signals are allocated to the same output circuit. Signals that are not detected are invalid. For example, the positioning completed signal /COIN is invalid in Speed Control mode.

7.4.1

CONTROL MODE SELECTION

The XtraDrive servo amplifier offers speed control, position control, torque control, and the other control modes shown in the following table.

PARAMETER		SIGNAL	SETTING	CONTROL MODE	
Pn000.1		Control Method Selection	Default Setting: 0	Speed/Torque Control, Position Control	
Pn000.1 Setting	Control Mode				
0	Speed Analog – an external analog speed signal reference is supplied. Signal reference range is +/-2 to +/-10V/ rated motor speed. See Chapter 7.2.1 "Speed Reference".				
1	Control from Option Board – system operation is controlled by an external application board (Note: XtraDrive must be configured to include CN-10 connector from the factory to allow for option board capability). <i>See Chapter 7.2.1 "Speed Reference"</i> .				
2	Torque (analog) – an external analog torque signal reference is supplied. Signal reference range is +1 to +/-10V/ rated motor torque. <i>See Chapter 7.2.7 "Using Torque Control"</i> .				
3	Speed Contact – The speed is controlled by selecting digital I/O and setting preset speeds in the Servo Amplifier <i>See Chapter 7.2.6 "Contact Input Speed"</i> .				
4	Speed (Contact /Analog) – Speed is controlled by both the analog reference and Digital Inputs <i>See Chapter 7.2.6 "Contact Input Speed"</i> .				
5	Not Used				
6	Speed (Contact/Torque Analog) - Speed is control using the torque Analog and the preset speeds and digital Inputs <i>See Chapter 7.2.8 "Torque Feed Forward"</i> .				
7	No	t Used			
8	No	t Used			
9	Torque - Servo is torque controlled only uses the analog speed input <i>See Chapter 7.2.7 "Using Torque Control"</i> .				
А	Speed Control (Analog/Zero Clamp) - The Speed of the servo is controlled by the Speed Analog input with configurable dead band <i>See Chapter 7.5.3 "Using Zero Clamp"</i> .				
В	Not Used NOTE - in other (7.2.10)				
С	NCT Position Control (Pulse Train) – external pulse train signals are used as position reference for the servo system. <i>See Chapter 7.2.2 "Position Reference".</i>			signals are used as	
D	NCT Programming Mode – control of the servo system utilizes the on-board indexer, and full programmability of the XtraDrive <i>See Chapter 7.10 "Configurations of Serial Commands for AB Encoders"</i> .				

The following parameter is used to set the control mode.

7.5 SETTING STOP FUNCTIONS

This section describes the procedure used to stop the servo amplifier properly.

7.5.1 Adjusting Offset

The servo motor may rotate at very low speed and not stop even when 0V is specified as the reference voltage for servo amplifier speed and torque control (analog reference). This happens when the reference voltage from the host controller or external circuit is slightly offset (in mV units). The servo motor will stop if this offset is properly adjusted to 0V.

When the Servo Motor Will Not Stop

Reference Offset Adjustment

The following methods can be used to adjust the reference offset to 0V.

Adjustment Method	RESULT
Automatic Adjustment of Reference Offset	The reference offset is automatically adjusted to 0V.
Manual Adjustment of Reference Offset	The reference offset can be set to a specified value.

NOTE: Use manual rather than automatic adjustment if a position control loop is formed in the host controller.

See the following sections in *Chapter 9 "Using the Panel Operator"* for more details on adjustment procedures:

Adjustment Method	Reference Source
Automatic Adjustment of	9.2.3/ Automatic Adjustment of the Speed and Torque
Reference Offset	Reference Offset
Manual Adjustment of	9.2.4/ Manual Adjustment of the Speed and Torque
Reference Offset	Reference Offset

7.5.2

SERVO OFF STOP MODE SELECTIONS

To stop the servo motor by applying the dynamic brake (DB), set the desired mode in the following parameter. The servo motor will stop due to equipment friction if the dynamic brake is not applied.

PARAMETER	SIGNAL	Setting (ms)	DESCRIPTION
Pn001.0	Servo OFF or Alarm Stop Mode	Default Setting: 0	Speed/Torque Control, Position Control

The XtraDrive servo amplifier turns OFF under the following conditions:

- The Servo ON input signal (/S-ON, CN1-40) is turned OFF.
- A servo alarm occurs.
- Power is turned OFF.

Specify the Stop mode as one of these options

Pn001.0 Setting	RESULT
0	Uses the dynamic brake to stop the servo motor. Maintains dynamic brake after the servo motor stops.*
1	Uses the dynamic brake to stop the servo motor. Releases dynamic brake after the servo motor stops, and the servo motor coasts to a stop.
2	Coasts the servo motor to a stop.** The servo motor is turned OFF and motion stops due to equipment friction.

NOTE: * If the servo motor is stopped or moving at extremely low speed, it will coast to a stop.

	** When the main power supply is turned OFF for the following servo amplifiers, the
DB circuit	is turned ON when the control power supply is OFF:
	30 to 1500W for 200V
	2.0 to 3.0kW for 400V
	If the DB circuit needs to be turned OFF when the main power supply or the control
power supply	is OFF, disconnect the servo amplifier's wiring (U, V, and W).

NOTE: The dynamic brake is an emergency stop function. Do not repeatedly start and stop the servo motor

NOTE: The **dynamic brake** (**DB**) is a common way of quickly stopping a servo motor by electrically shorting its electrical windings. The DB circuit is incorporated into the servo amplifier.

7.5.3 Using the Zero Clamp Function

Zero Clamp Function

The zero clamp function is used for systems where the host controller does not form a position loop for the speed reference input. In other words, this function is used to stop and lock the servo motor even when the input voltage of speed reference V-REF is not 0V. An internal position loop is temporarily formed to clamp the servo motor within one pulse when the zero clamp function is turned ON. Even if the servo motor is forcibly rotated by external force, it will still return to the zero clamp position.

Parameter Setting

Set the following parameter so that the input signal CN1-41 (/ZCLAMP) can be used to enable or disable the zero clamp function.

PARAMETER	Signal	Setting (ms)	DESCRIPTION
Pn000.1	Control Method Selection	Default Setting: 0	Speed Control

NOTE: The /ZCLAMP signal can be used when an input circuit signal is allocated. See *Chapter 7.3.* "*Input Circuit Signal Allocation*" for more details.

Chapter 7

PN000.1 SETTING	Control Mode	
	 Zero Clamp Control Mode This mode allows the zero clamp function to be set when the servo motor stops. The speed reference is input from V-REF (CN1–5). (/ZCLAMP) CN1–41 is used to turn the zero clamp function ON and OFF. 	XtraDrive Speed reference ———————————————————————————————————
Α	CN1-41 is open (OFF). Turns the zero clamp function OFF. CN1-41 is 0V (ON). Turns the zero clamp function ON.	 Zero clamp is performed when the following two conditions are satisfied: CN1-41 (/ZCLAMP) is ON. Speed reference is below the setting designated at Pn501.

Setting Motor Speed

Use the following parameter to set the motor speed level at which zero clamp is performed

PARAMETER	Signal	Setting (RPM)	DESCRIPTION
Pn501	Zero Clamp Level	Setting Range: 0 to 10000	Speed Control
FIIJUI	Zero Clamp Lever	Default Setting: 10	Speca Control

Zero Clamp Conditions

If zero clamp speed control is selected, set the motor speed at which zero clamp is to be performed. The maximum speed will be used if the value of Pn501 is set higher than the maximum speed of the servo motor.

Zero clamp is performed when all the following conditions are satisfied:

- Zero clamp speed control is selected (parameter Pn000.1 is set to A).
- (/ZCLAMP) CN1-41 is ON (0V).
- Speed reference drops below the setting level of Pn501

121

NOTE: When the /ZCLAMP signal is allocated, the zero clamp operation will be used even for speed control (Pn000.1 = 0).

7.5.4 Using the Holding Brake

The holding brake is used when a XtraDrive controls a vertical axis. In other words, a servo motor with brake prevents the movable part from shifting due to the force of gravity when system power goes OFF.

Note: The holding brake should only be engaged when the shaft has stopped rotating.

Wiring Example

Use the servo amplifier contact output signal /BK and the brake power supply to form a brake ON/OFF circuit. The following diagram shows a standard wiring example.

BK-RY: Brake control relay

*1 and *2 are the output terminals allocated with Pn50F.2

Cha	pter	7
		-

123

	Output ⇒ /BK B	Brake Interlock Output	Speed/Torque Control, Position Control
--	----------------	------------------------	--

This output signal controls the brake when using a servo motor with a brake and does not have to be connected when using a servo motor without a brake.

STATE	Status	RESULT
ON:	Closed or low level	Releases the brake.
OFF:	Open or high level	Applies the brake.

Related Parameters

PARAMETER	DESCRIPTION
Pn506	Time Delay from Brake Reference until Servo OFF
Pn507	Speed Level for Brake Reference Output during Motor Operation

The following parameter must be selected to determine the location of the output signal, when the /BK signal is used.

PARAMETER	SIGNAL	SETTING	DESCRIPTION
Pn50F	Output Signal Selections 2	Default Setting: 0000	Speed/Torque Control, Position Control

Select the /BK output terminal.

	Serence	OUTPUT TERMINAL (CN1)	
PARAMETER	SETTING	*1	*2
Pn50F.2	0		
	1	25	26
	2	27	28
	3	29	30

NOTE: Signals are output with OR logic when multiple signals are allocated to the same output circuit. Set other output signals to a value other than the one allocated to the /BK signal in order to output the /BK signal alone. See *Chapter 7.4 "Output Circuit Signal Allocation"*.

Brake ON Timing

If the equipment moves slightly due to gravity when the brake is applied, set the following parameter to adjust brake ON timing.

PARAMETER	SIGNAL	Setting (10ms)	DESCRIPTION
Pn506	Brake Reference Servo	Setting Range: 0 to 50	Speed/Torque Control,
	OFF Delay Time	Default Setting: 0	Position Control

This parameter is used to set the output time from the brake control signal /BK until the servo OFF operation (servo motor output stop) when a servo motor with a brake is used.

With the standard setting, the servo is turned OFF when the /BK signal (brake operation) is active. The equipment may move slightly due to gravity depending on equipment configuration and brake characteristics. If this happens, use this parameter to delay servo OFF timing.

This setting sets the brake ON timing when the servo motor is stopped. Use Pn507 and 508 for brake ON timing during operation.

NOTE: The servo motor will turn OFF immediately if an alarm occurs. The equipment may move due to gravity in the time it takes for the brake to operate.

Holding Brake Setting

Set the following parameters to adjust brake ON timing so the holding brake is applied when the servo motor stops.

PARAMETER	SIGNAL	Setting	DESCRIPTION
Pn507	Brake Reference Output Speed Level	Setting Range: 0 to 10000rpm Default Setting: 100rpm	Speed/Torque Control, Position Control
Pn508	Timing for Brake Reference Output during Motor Operation	Setting Range: 0 to 100 x10ms Default Setting: 50 x 10ms	Speed/Torque Control, Position Control

Set the brake timing to be used when the servo is turned OFF by input signal /S-ON (CN1-40) or when an alarm occurs during motor operation.

Servomotor OFF

Brake ON timing when the servo motor stops must be adjusted properly because servo motor brakes are designed as holding brakes. Adjust the parameter settings while observing equipment operation.

/BK Signal Output Conditions During Servo Motor Operation

The circuit is open under either of the following conditions:

- Motor speed drops below the setting at Pn507 after servo OFF.
- The time set at Pn508 has elapsed since servo OFF.

The actual speed used will be the maximum speed even if Pn507 is set higher than the maximum speed.

7.6 FORMING A PROTECTIVE SEQUENCE

This section describes the procedure for using I/O signals from the servo amplifier to form a protective safety sequence.

7.6.1 Using Servo Alarm and Alarm Code Outputs

The basic procedure for connecting alarm output signals is described below.

126 XtraDrive Users Guide

The user must provide a suitable external I/O power supply separately because there is no internal 24V power supply in the servo amplifier.

Output ⇔ ALM+ CN1-31	Servo Alarm Output	Speed/Torque Control, Position Control
Output ⇔ ALM- CN1-32	Signal Ground for Servo Alarm Output	Speed/Torque Control, Position Control

The use of the photocoupler output signals is described below

These alarms are output when a servo amplifier alarm is detected.

Form an external circuit so that this alarm output (ALM) turns OFF the servo amplifier.

STATE	Status	RESULT
ON	Circuit between CN1-31 and 32 is closed, and CN1-31 is at low level.	Normal state.
OFF	Circuit between CN1-31 and 32 is open, and CN1-31 is at high level.	Alarm state.

Alarm codes ALO1, ALO2 and ALO3 are output to indicate each alarm type.

The use of open-collector output signals ALO1, ALO2, and ALO3 is described below.

Output ⇒ ALO1 CN1-37	Alarm Code Output	Speed/Torque Control, Position Control
Output ⇒ ALO2 CN1-38	Alarm Code Output	Speed/Torque Control, Position Control
Output ⇔ ALO3 CN1-39	Alarm Code Output	Speed/Torque Control, Position Control
Output ⇔/SG CN1-1	Signal Ground for Alarm Code Output	Speed/Torque Control, Position Control

These signals output alarm codes to indicate the type of alarm detected by the servo amplifier. Use these signals to display alarm codes at the host controller. See *Appendix A 2.3 "Alarm Display Table"* for more on the relationship between alarm display and alarm code output.

When a servo alarm (ALM) occurs, eliminate the cause of the alarm and set the following /ALM-RST input signal to high level (ON) to reset the alarm.

Input ⇒ /ALM-RST CN1-44	Alarm Reset	Speed/Torque Control, Position Control
-------------------------	-------------	---

The Alarm Reset signal is used to reset a servo alarm.

127

From an external circuit so that the servo amplifier turns OFF when an alarm occurs. Alarms are reset automatically when the control power supply is turned OFF.

Alarms can also be reset using a panel or digital operator.

NOTE: 1. Encoder alarms cannot always be reset by inputting the /ALM-RST signal. In that case, turn the control power supply OFF to reset the alarm.

2. When an alarm occurs, always eliminate the cause before resetting the alarm. See *Appendix A 2.1 "Troubleshooting Problems with Alarm Displays"* more details on troubleshooting the system when an alarm occurs.

for

7.6.2

3. In a Position Control Alarm Code do not relate to trajectory errors. See *Chapter 7.6.2. "Using the Servo ON Input Signal (/S-ON)"*.

USING SERVO ON INPUT SIGNAL (/S-ON)

This section describes the basic use and wiring procedure for the Servo ON (/S-ON) input signal (programmable input signal). Use this signal to forcibly turn OFF the servo motor from the host controller.

⇒ Input /S-ON CN1-40 Servo ON	Speed/Torque Control, Position Control
-------------------------------	---

This signal is used to turn the servo motor ON and OFF.

CN1-40 State	Status	Result
ON	Closed or low level	Turns ON the servo motor: operates according to signal input. This is the default state.
OFF	Open or high level	Servo motor cannot operate. Do not turn OFF the servo motor while it is operating except in an emergency.

• Do not use the Servo ON (/S-ON) signal to start or stop the motor. Always use an input reference signal, such as Speed Reference to start or stop the servo motor. Using the Servo ON signal to start or stop the motor will shorten the life of the servo amplifier.

PARAMETER	SIGNAL	Setting	DESCRIPTION
Pn50A.1	/S-ON Signal Mapping	Default Setting: 8	Speed/Torque Control, Position Control

Set the following parameter to 7 if the /S-ON signal will not be used.

The external short-circuit wiring shown in the figure can be omitted if the Servo ON (/S-ON) input signal is not used.

Pn50A.1 Setting	Status	RESULT
0	Enables the servo ON (/S-ON) input signal.	The servo is OFF when CN-40 is open and ON when CN1-40 is at 0V.
7	Disables the servo ON (/S-ON) input signal.	The servo is always ON and has the same effect as shorting CN1-40 to 0V.

7.6.3 Using the Positioning Completed Output signal (/coin)

This section describes the basic use and wiring procedures for the positioning completed (/COIN) output signal (photocoupler output signal). The signal is output to indicate that servo motor operation is completed.

This signal indicates that the servo motor movement during position control has been completed. The host controller uses the signal as an interlock to confirm that positioning is completed.

Chapter 7

/COIN State	Status	Result
ON	Circuit between CN1-25 and 26 is closed, and CN1-25 is at low level.	Positioning is completed. (Position error is below the setting.)
OFF	Circuit between CN1-25 and 26 is open, and CN1-25 is at high level.	Positioning is not completed. (Position error is above the setting.)

The following parameter is used to change the CN1 connector terminal that outputs the /COIN signal.

PARAMETER	Signal	Setting (rpm)	DESCRIPTION
Pn50E	Output Signal Selection 1	Default Setting: 0000	Position Control

The parameter is factory set so the /COIN signal is output between CN1-25 and 26. See *Chapter 7.4 "Output Circuit Signal Allocation"* for more details on parameter Pn50E.

The following parameter is used to set the number of error pulses and to adjust the output timing of the positioning completed signal.

PARAMETER	Signal	SETTING (REFERENCE UNITS*)	DESCRIPTION
Pn500	Positioning Completed Width	Setting Range: 0 to 250 Default Setting: 7	Position Control

NOTE: *Reference units for this parameter are the number of input pulses as defined using the electronic gear function; if a Serial Command is used, it is defined in Position Units.

This parameter is used to set output timing for the positioning completed signal (/COIN) when the position reference pulse is input and servo motor operation is completed.

Set the number of error pulses in reference units.

Too large a value set at this parameter may output only a small error during low-speed operation that will cause the /COIN signal to be output continuously. The positioning completed width setting has no effect on final positioning accuracy.

NOTE: /COIN is a position control signal.

With the default setting, this signal is used for the speed coincidence output /V-CMP for speed control, and it is always ON for torque control.

7.6.4 SPEED COINCIDENCE OUTPUT (/V-CMP)

This section describes the basic use and wiring procedures for the speed coincidence (/V-CMP) output signal (photocoupler output signal), used to indicate a match with the speed reference. The host controller uses the signal as an interlock.

Output ⇔/V-CMP CN1-25	Speed Coincidence Output Signal	Speed Control
-----------------------	------------------------------------	---------------

This signal is output when the actual motor speed during speed control is the same as the speed reference input

/V-CMP STATE	Status	RESULT
ON	Circuit between CN1-25 and 26 is closed, and CN1-25 is at low level.	Speed coincides. (Speed error is below the setting.)
OFF	Circuit between CN1-25 and 26 is open, and CN1-25 is at high level.	Speed does not coincide. (Speed error is above the setting.)

The following parameter setting is used to change the CN1 connector terminal that outputs the /V-CMP signal.

PARAMETER	SIGNAL	Setting (RPM)	DESCRIPTION
Pn50E	Output Signal Selections 1	Default Setting: 0000	Position Control

The parameter is default set so the /V-CMP signal is output between CN1-25 and 26. See *Chapter 7.4 "Output Circuit Signal Allocation"* for more details on parameter Pn50E.

Chapter 7

The following parameter is used to set conditions for speed coincidence output.

PARAMETER	Signal	Setting (ms)	DESCRIPTION
Pn001.0	Servo OFF or Alarm Stop Mode	Default Setting: 0	Speed/Torque Control, Position Control

This parameter is used to set conditions for speed coincidence signal /TGON output.

The /V-CMP signal is output when the difference between the speed reference and actual motor speed is below this setting.

- **EXAMPLE:** The /V-CMP signal turns ON at 1900 to 2100rpm if the parameter is set to 100 and the reference speed is 2000rpm.
- **NOTE:** /V-CMP is a speed control signal. With the default setting, this signal is used as the positioning completed signal /COIN for position control, and it is always ON for torque control.

7.6.5 Using the Running Output Signal (/tgon)

This section describes the basic use and wiring procedures for the running (/TGON) output signal (photocoupler output signal). The signal can be activated to indicate that the servo motor is currently operating. It is used as an external interlock.

/TGON STATE	Status	RESULT
ON	Closed or low level.	Servo motor is operating. (Motor speed is above the setting level).
OFF	Open or high level.	Servo motor is not operating. (Motor speed is below the setting level).

The following parameter setting is used to change the CN1 connector terminal that outputs the /TGON signal.

PARAMETER	Signal	Setting (rpm)	DESCRIPTION
Pn50E	Output Signal Selections 1	Default Setting: 0000	Position Control

131

The parameter is default set so the /TGON signal is output between CN1-27 and 28. See *Chapter 7.4 "Output Circuit Signal Allocation"* for more details on parameter Pn50E.

This parameter is used to set output conditions for the operation detection output signal /TGON.

This parameter is used to set the speed at which the servo amplifier determines that the servo motor is running and then to output an appropriate signal. The following signals are generated when motor speed exceeds the preset level.

- Signals generated when servo motor operation is detected:
 - /TGON
 - Status Indication Mode
 - Monitor Mode Un006

7.6.6 Using the Servo Ready Output Signal (/s-rdy)

This section describes the basic use and wiring procedures for the Servo Ready (/S-RDY) output signal (photocoupler output signal).

Servo Ready means there are no servo alarms and the main circuit power supply is turned ON. An added condition with absolute encoder specifications is that the SEN signal is at high level and absolute data was output to the host controller.

This signal indicates that the servo amplifier has completed all preparations and is ready to receive the Servo ON signal.

Chapter 7

/S-RDY STATE	Status	RESULT
ON	Closed or low level.	Servo motor is ready
OFF	Open or high level.	Servo motor is not ready

The following parameter setting is used to change the CN1 connector terminal that outputs the /S-RDY signal

PARAMETER	Signal	Setting)	DESCRIPTION
Pn50E	Output Signal Selections 1	Default Setting: 0000	Position Control

The parameter is factory set so the /V-CMP signal is output between CN1-29 and 30. See *Chapter 7.4 "Output Circuit Signal Allocation"* for more details on parameter Pn50E.

7.6.7 Using the Warning Output Signal (/warn)

This section describes the basic use and wiring procedure for the warning (/WARN) output signal (photocoupler output signal).

Output⇒ /WARN	Warning Output Signal	Speed/Torque Control, Position Control
---------------	-----------------------	---

This output signal indicates an overload or regenerative overload warning.

/WARN STATE	Status	RESULT		
ON	Closed or low level.	Error warning.		
OFF	Open or high level.	Normal operation. No warning.		

The following parameter setting is used to change the CN1 connector terminal that outputs the /WARN signal.

PARAMETER	PARAMETER SIGNAL		CONTROL MODE
Pn50F	Output Signal Selections 2	Default Setting: 0000	Speed/Torque Control, Position Control

Pn50F.3 is used to allocate the /WARN output signals above.

D 50E 2 G	OUTPUT TERMINAL (CN1-)				
PN50F.3 STATE	*1	*2			
0	—	_			
1	25	26			
2	27	28			
3	29	30			

Note: *1 and *2 are output terminals allocated with parameter Pn 510.0. Multiple signals allocated to the same output terminal follow Boolean OR logic. In order to use the /WARN output signal alone, set other output signals to a value other than the one allocated to the /WARN signal. See *Chapter 7.4 "Output Circuit Signal Allocation"*.

The following parameter is used to output warning details with an alarm code.

PARAMETER		Signal	Setting	CONTROL MODE
Pn001.3		Warning Code Output Selection	Default Setting: 0	Speed/Torque Control, Position Control
		Pn001.3 Setting	Result	
		0	Outputs alarm codes only for alarm codes ALO2 and ALO3.	
1		1	Outputs both alarm and warn codes ALO1, ALO2 and ALO alarm code when an alarm oc	ing codes for alarm 03 and outputs an ocurs.

The following warning codes are output in 3 bits

WARNING	VARNING WARNING CODE OUTPUT			W
INDICATION	ALO1	ALO2	ALO3	WARNING DESCRIPTION
A.91	ON signal (low level)	OFF signal (high level)	OFF signal (high level)	Overload
A.92	OFF signal (high level)	ON signal (low level)	OFF signal (high level)	Regenerative overload

To use the /NEAR signal, an output terminal must be allocated with the parameter below.

PARAMETER	SIGNAL	Setting	CONTROL MODE	
Pn510	Output Signal Selections 3	Default Setting: 0000	Position Control	

135

7.6.8 HANDLING POWER LOSS

The following parameter is used to specify whether to generate an alarm when power loss occurs.

PARAMETER	Signal	Setting (ms)	DESCRIPTION
Pn509	Momentary Hold Time	Setting Range: 20 to 1000 Default Setting: 20	Speed/Torque Control, Position Control

The servo amplifier turns the servo motor OFF if it detects a voltage drop in the power supply. The default setting of 20ms means that servo motor operation will continue if power is lost for less than 20ms.

In the following instances, however, either a servo alarm is generated or control is lost (equivalent to normal power OFF operation) regardless of the parameter setting.

- When an insufficient voltage alarm (A.41) occurs during power loss with a large servo motor load.
- Loss of the control power supply is equivalent to normal power OFF operation, thus control is lost.

In power loss detection, the status of the main circuit power supply is detected and OFF status is ignored so that the servo motor's operation will continue if motor power turns back ON within the time set at user constant Pn509.

7.7

Selecting a Regenerative Resistor

When the servo motor operates in Generator mode, power is returned to the servo amplifier side. This is called regenerative power. The regenerative power is absorbed by charging the smoothing capacitor, but when the capacitor's charging limit is exceeded, the regenerative power is then reduced by the regenerative.

The servo motor is driven in regeneration (generator) mode in the following conditions:

- While decelerating to a stop during acceleration/deceleration operation.
- With a load on the vertical axis.
- During continuous operation with the servo motor driven from the load side (negative load).

The capacity of the servo amplifier's built-in regenerative is designed for short-term operation only, such as the deceleration stop period. Operation under a negative load is not possible.

If the regenerative power exceeds the processing capacity of the servo amplifier, install an external regenerative . The following table shows the examples of specifications for servo amplifier's built-in and the amount of regenerative power (average values) that it can process.

Applicable Servo Amplifiers		Buii Specifi	LT-IN CATIONS	REGENERATIVE	MINIMUM	
		RESISTANCE	CAPACITY	POWER PROCESSED BY BUILT DX * (W)	ALLOWABLE RESISTANCE	
		(Ω)	(W)	DUILI-IN (VV)	(82)	
Single-phase 100V	XD-P3-L* to -02-L*	—	—	_	40	
	XD-P3-M* to -04-M*	—		—		
Single-phase 200V	XD-08-M*	50	60	12	40	
	XD-15-M*	25	140	28		
	XD-10-M*	50	60	12	40	
Three-phase 400V	XD-20-M*	25	140	28	12	
	XD-30-M*	12.5	140	28	12	
	XD-05-T* to -15-T*	108	70	14	73	
Three-phase 400V	XD-20-T* to -30-T*	45	140	28	44	
	XD-50-T*	32	180	36	28	

NOTE: The amount of regenerative power (average value) that can be processed is rated at 20% of the capacity of the servo amplifier's built-in regenerative. Available as built-in on modules 05, 08, 10, 15, 20, 30, 50.

When installing an external regenerative, make sure that the resistance is the same as that of the servo amplifier's built-in. If you combine multiple small-capacity regenerative resistors to increase the regenerative capacity (W), select the resistors in a way that the resistance value including error is at least as high as the minimum allowable resistance shown in the table above.

7.7.1 EXTERNAL REGENERATIVE RESISTOR

When installing an external regenerative, a parameter setting must be changed as shown below.

PARAMETER	SIGNAL	Setting (x 10W)	DESCRIPTION
Pn600	Regenerative	Setting Range: 0 -65535	Speed/Torque Control,
	Resistor Capacity	Default Setting: 0	Position Control

The default setting of "0" in the above table is the set value when the servo amplifier's built-in is used or when a servo amplifier without a built-in is used.

When installing an external regenerative, set the regenerative 's capacity (W).

EXAMPLE: When the external regenerative 's actual consumable capacity is 100W, set the parameter to "10" ($10 \times 10W = 100W$)

NOTE: 1. In general, when resistors for power are used at the rated load ratio, the temperature increases to between 200°C and 300°C. The resistors must be used at or below the rated values. Check with the manufacturer for the 's load characteristics. Use resistors at no more than 20% of the rated load ratio with natural convection cooling, and no more than 50% of the rated load ratio with forced aircooling. Parameter Pn600 must be set for the derated.

2. Use of resistors with thermal switches is recommended as a safety precaution.

Connecting Regenerative Resistors

If an external regenerative resistor is required for an XtraDrive with a power capacity greater than 0.5kW the internal resistor should be disconnected by removing the jumper between terminals B2 and B3 as illustrated below:

*The user must provide the regenerative resistor.

NOTE: XtraDrive units with power capacity of 400W and below do not have internal regeneration resistors and will not have a jumper between terminals B2 and B3.

7.7.2 CALCULATING THE REGENERATIVE POWER CAPACITY

Simple Calculation Method

When driving a servo motor normally along the horizontal axis, check the external regenerative requirements using the calculation method shown below.

Servo Amplifiers with Capacities of 400W or Less

Servo amplifiers with capacities of 400W or less do not have built-in regenerative resistors. The energy that can be absorbed by capacitors is shown in the following table. If the rotational energy in the servo system exceeds these values, then connect a regenerative externally.

Voltage	Applicable Servo Amplifiers	Applicable Servo Amplifiers Regenerative Energy that Can Be Processed (Joules)			
1001/	XD-P3-L*	7.8	Value when the input voltage		
100 V	XD-P5-L* to XD-02-L*	15.7	is 100V AC		
2001/	XD-P3-M*, XD-P5-M*	18.5	Value when the input voltage		
200V	XD-01-M* to -04-M*	37.1	is 200V AC		

Calculate the rotational energy in the servo system using the following equation:

$$E_{\rm S} = \frac{J \, x \, (N_{\rm M})^2}{128} \text{ Joules}$$

Where: $J = J_M + J_L$

 $J_{\rm M}$: Servomotor rotor inertia (kg·m²)

 J_L : Motor axis conversion load inertia (kg·m²)

N_M: Rotation speed of the servomotor (rpm)

Servo Amplifiers Capacities of 0.8 to 5.0kW

Servo amplifiers with capacities of 500W to 5kW have built-in regenerative resistors. The allowable frequencies for just the servo motor during acceleration/deceleration operation, in the run cycle from $0 \rightarrow$ maximum rotation speed $\rightarrow 0$, are summarized in the following table.

Convert the data into the values obtained with actual rotation speed used and load inertia to determine whether an external regenerative is needed.

VOLTACE	SERIES	ALLOWABLE FREQUENCIES IN REGENERATION MODE (R/MIN)						MIN)			
V OLTAGE	CAPACITY SYMBOL	03	05	08	09	10	13	15	20	30	50
	SGMAH			89							
200V	SGMPH			29	_			17			
	SGMGH □A□A	_	34	_	13	_	10	_	12	8	_
	SGMSH					39		31	48	20	
400V	SGMGH	_	42		15		10	_	12	8	
	SGMSH					47		31	48	20	22
	SGMUH					27		19		13	

Operating Conditions for Allowable Regenerative Frequency Calculation

Use the following equation to calculate the allowable frequency for regeneration mode operation.

Allowable frequency =
$$\frac{\text{Allowable frequency for servomotor only}}{(1 + n)} \times \left(\frac{\text{Max. rotation speed}}{\text{Rotation speed used}}\right)^2 \frac{\text{Cycles}}{\text{Minute}}$$

Where: $n = J_L/J_M$
 J_L : Motor axis conversion load inertia (kg·m²)

 J_M : Servomotor rotary inertia (kg·m²)

Regenerative Energy Calculation Method

This section shows the procedure for calculating the regenerative capacity when acceleration and deceleration operation is as shown in the following diagram.

The procedure for calculating the capacity is as follows:

Step	Procedure	Units	Equation
1	Find the rotational energy of the servo system (E_S) .	$E_s = Joules$ $N_M = rpm$	$E_{S} = \frac{(J_{L} + J_{M}) \times N_{M}^{2}}{182}$ Where: N _M = Motor speed J _L = Load Inertia J _M = Motor Inertia
2	Find the energy consumed by load system loss (E_L) during the deceleration period (t_D) .	$\tau_{L} = (N \cdot m)$ $E_{L} = Joules$ $N_{M} = rpm$ $t_{D} = s \text{ (see below)}$	$E_{L} = \frac{\pi}{60} (N_{M} x \tau_{L} x t_{D})$ Where: τ_{L} = Motor torque
3	Calculate the energy lost (E_M) from servomotor winding resistance.	t _D = deceleration stopping time in seconds E _M = Joules	$E_M = ($ Value from the "Servomotor Winding Resistance Loss" graph below) x t _D
4	Calculate the servo amplifier energy (E $_{\rm C}$) that can be absorbed.	$E_{\rm C} = $ Joules	E_C = Value from the "Absorbable Servo Amplifier Energy" graph below.
5	Find the energy consumed by the regenerative resistor (E_K) .	$E_{K} = Joules$	$E_{K} = E_{S} - (E_{L} + E_{M} + E_{C})$
6	Calculate the required regenerative resistor capacity (W $_{\rm K}$).	$W_K = Watts$ $E_K = Joules$ T = total cycle time in seconds	$W_{K} = \frac{E_{K}}{0.2 \text{ x T}}$ Where: T = Time

NOTE: The "0.2" in the equation for calculating WK is the value for when the regenerative 's utilized load ratio is 20%.

If the previous calculation determines that the amount of regenerative power that can be processed by the built-in is not exceeded, then an external regenerative is not required.

Cha	apt	er	7
		-	_

If the amount of regenerative power that can be processed by the built-in is exceeded, install an external regenerative for the capacity obtained from the above calculation.

If the energy consumed by load system loss (in step 2 above) is unknown, then perform the calculation using $E_{L} = 0$.

When the operation period in regeneration mode is continuous, add the following items to the calculation procedure above in order to find the required capacity (W) for the regenerative .

- Energy for continuous regeneration mode operation period: E_G (joules)
- Energy consumed by regenerative : $E_{K} = E_{S} (E_{L} + E_{M} + E_{C}) + E_{G}$ Required capacity of regenerative : $W_{K} = E_{K} / (0.2 \cdot T)$ Here, $E_{G} = (2\pi/60) N_{MG} x \tau/_{G} \cdot t_{G}$
- τG : Servo motor's generated torque (N·m) in continuous regeneration mode operation period.
- N_{MG} : Servo motor rotation speed (rpm) for same operation period as above.
- tG: Same operation period (s) as above.

Servo Amplifier's Absorbable Energy

The following diagrams show the relationship between the servo amplifier's input power supply voltage and its absorbable energy.

• XtraDrive for 200V motor

XtraDrive for 400V motor

141

7.8 ABSOLUTE ENCODERS

If a motor with an absolute encoder is used, a system to detect the absolute position can be formed in the host controller. Consequently, automatic operation can be performed without zero return operation immediately after the power is turned ON.

• When using the "Infinite Length Positioning System" be sure to take into account the changes made in the continuous counting method when limits are exceeded, as compared in the following table.

The output range of multi-turn data for the XtraDrive series absolute detection system differs from the one used in conventional (Sigma) 12- and 15-bit encoder systems.

Absolute Encoder Type	Output Range of Multi-turn Data	WHEN THE OUTPUT RANGE EXCEEDS THE LIMIT:
(Sigma) conventional type 12- and 15-bit encoder	-99999 to +99999	 When the upper limit (+99999) is exceeded in positive direction, the counter displays 00000 and begins counting up again. When the lower limit (-99999) is exceeded in negative direction, the counter displays 00000 and begins counting down again.
XtraDrive Series 16- and 17-bit encoder	-32768 to +32767	 When the upper limit (+32767) is exceeded in positive direction, the counter changes polarity (-32767) and begins counting up (toward zero and beyond). When the lower limit (-32767) is exceeded in negative direction, the counter changes polarity (+32767) and begins counting down (toward zero and beyond).

NOTE: After the limit has been changed in the multi-turn limit setting parameter (Pn205), the power must be cycled. This generates Multi-turn Limit Disagreement Alarm (A.CC). Make sure that the entered value is appropriate before resetting this alarm. For more information see: *Chapter 7,8.2. "Configuring an Absolute Encoder"*, and *Appendix A 2.1 "Troubleshooting Problems with Alarm Displays"*.

Chapter 7

7.8.1 INTERFACE CIRCUIT

The following diagram shows the standard connections for an absolute encoder mounted to a servo motor.

Applicable line receivers: SN75175 or MC3486 by TI. Terminating resistance R: 220 to 470Ω

SEN Signals

PNP is recommended for transistors. Signal Levels High level: 4.0V min.; Low level: 0.8V max.

- Wait at least three seconds after turning ON the power before raising the SEN signal to high level.
- When the SEN signal is changed from low level to high level, the multi-turn data and initial incremental pulses are transmitted.
- The motor cannot be operated until these operations are completed, regardless of the status of the servo ON signal (/S-ON).

NOTE: If for some reason it is necessary to turn OFF a SEN signal that is already ON, and then to turn it back ON again, maintain the high level for at least

143

7.8.2 CONFIGURING AN ABSOLUTE ENCODER

Select the absolute encoder's application with the following parameter.

PARAMETER	Signal	Setting	CONTROL MODE
Pn002.2	Absolute Encoder Application	Setting Range: 0 or 1 Default Setting: 1	Speed/Torque Control, Position Control

Either "0" or "1" in the following table must be set in order to enable the absolute encoder.

PN002.2 Setting	RESULT
0	Uses the absolute encoder as an absolute encoder.
1	Uses the absolute encoder as an incremental encoder.

The following parameter is used to periodically clear the encoder's counter (return the setting to 0) after a designated ratio of motor to load axis revolutions. This function is called the multi-turn limit.

NOTE: The term **Multi-turn Limit** refers to the highest number of rotations the encoder's counter will display before returning the counter to 0.

PARAMETER	Signal	Setting	CONTROL MODE
Pn205	Multi-turn Limit Setting	Setting Range: 0 to 65535 Default Setting: 65535	Speed/Torque Control, Position Control

- When Pn205 is set to the default (65535), multi-turn data varies in the range of -32768 to +32767.
- With any other Pn205 value entered, data varies from 0 to the set value.
- **NOTE:** To activate reassignment of this value, the user must first enter the change to the parameter, and then cycle (turn OFF and then turn ON) the power.

Since the encoder's multi-turn limit value is set by default to 65535, the following alarm occurs if the servo amplifier's power supply is cycled (turned OFF and ON) after changing parameter Pn205:

	Ala	RM CODE OU	TPUT		
ALARM DISPLAY	ALO1	ALO2	ALO3	DESCRIPTION	
A.CC	0	Х	0	Encoder multi-turn limit value does not match with that of the servo amplifier.	

NOTE: O: ON ("L") signal

X: OFF ("H") signal

145

In order to set a multi-turn limit value to the encoder, perform the multi-term limit setting operation (Fn-013).

This operation can be executed using the hand-held digital operator or the servo amplifier panel operator.

NOTE: The multi-turn limit setting is enabled only during the multi-turn limit value mismatch alarm. Cycle the power after performing this operation.

• Connect the ground terminal to a class-3 ground (100 Ω less). Improper grounding may result in electric shock or fire.

.3 Absolute Encoder Setup

Perform the setup operation for the absolute encoder in the following circumstances:

- When starting the machine for the first time.
 - When an encoder backup alarm is generated.
 - When the encoder loses power, often because of cable disconnection.

The setup operation can be performed by using personal computer monitor software.

The setup operation procedure shown here uses the digital operator. For more details, refer to *Chapter 9 "Using the Operator Panel"*.

1. Press the MODE/SET key to select the Auxiliary Function mode.

2. Press the Up Arrow ▲ or Down Arrow ▼ key to select the parameter Fn008.

3. Press the DATA/SHIFT key, holding it down for at least one second. The following display will appear.

7.8.3

4. Press the **Up Arrow** ▲ key, holding it down until "PGCL5" is displayed. If an erroneous key entry is made, "nO_OP" will flash for one second, and the display will return to the Auxiliary Function mode. In that case, go back to step 3 above and perform the operation again.

5. When "PGCL5" is displayed, press the MODE/SET key. The display will change as follows, and the absolute encoder's multi-turn data will be cleared.

6. Press the DATA/SHIFT key to return to the Auxiliary Function mode.

This completes the absolute encoder's setup operation. Cycle the power to the servo amplifier.

- **NOTE:** If the following absolute encoder alarms are displayed, the alarms must be cleared using the method described above for the setup operation. They cannot be cleared by the servo amplifier's alarm reset (/ARM-RST) input signal.
 - Encoder backup alarm (A.81)
 - Encoder checksum alarm (A.82)

In addition, if a monitoring alarm is generated in the encoder, the alarm must be cleared by turning OFF the power.

Multi-Turn Setup

1. Press the MODE/SET key to select the Auxiliary Function mode.

2. Press the Up Arrow ▲ or Down Arrow ▼ key to select the parameter Fn013.

3. Press the DATA/SHIFT key. The following display will appear.

4. Press the MODE/SET key. The display will change as follows, and the absolute encoder's multi-turn limit setting operation will be performed.

5. Press the DATA/SHIFT key to return to the Auxiliary Function mode.

This completes the absolute encoder's multi-turn limit setting operation. Cycle the power to the servo amplifier.

• The multi-turn limit value should be changed only for special applications.

Changing it inappropriately or unintentionally can be dangerous.

• If the Multi-turn Limit Value Disagreement Alarm occurs, check the setting of parameter Pn205 in the servo amplifier to be sure that it is correct. If Fn013 is executed when an incorrect value is set in Pn205, that same incorrect value will be set in the encoder. There will not be an additional alarm, even if an incorrect value is set, but incorrect positions will be detected.

This results in a potentially dangerous situation where the machine will move to an unexpected position.

7.8.4 Absolute Encoder Reception Sequence

This section describes the sequence in which the servo amplifier receives data from the absolute encoder and transmits it to the host device. Be sure you understand this section when designing the host device.

Outline of Absolute Signals

The absolute encoder's outputs are PAO, PBO, PCO, and PSO signals as shown below.

SIGNAL	STATUS	CONTENTS	
ΡΑΟ	Initial State	Serial data Initial incremental pulse	
	Normal State	Incremental pulse	
PBO	Initial State	Initial incremental pulse	
120		Incremental pulse	
РСО	Normal State	Home position pulse	
PSO		Rotation count serial data	

Contents of Absolute Data

- Serial data: Indicates how many turns the motor shaft has made from the reference position (position specified at setup).
- Initial incremental pulse: Outputs pulses at the same pulse rate as when the motor shaft rotates from the home position to the current position at approximately 2500rpm (for 16 bits when the dividing pulse is at the default setting).

Unapter /

The final absolute data PM can be found by using the following formulas:

Forward	$P_{\rm E} = M \times R + P_{\rm O}$	Reverse	$P_{E} = -(M \times R) + P_{O}$
ROTATION		ROTATION	E · · · · O
MODE!	$P_{\rm M} = P_{\rm E} - P_{\rm S}$	MODE:	$\mathbf{D} - \mathbf{D}$ \mathbf{D}
MODE.		(PN0000.0 = 1)	$\Gamma_{\rm M} - \Gamma_{\rm E} - \Gamma_{\rm S}$

Where: $P_E =$ The current value read by the encoder.

- \overline{M} = The multi-turn data (rotation count data).
- P_0 = The number of initial incremental pulses.
- $P_s =$ The number of initial incremental pulses read at setup. (This is saved and controlled by the host controller).
- $P_{\rm M}$ = The current value required for the user's system.
- R = The number of pulses per encoder revolution.

(Pulse count after dividing by the value of Pn201)

Absolute Encoder Transmission Sequence

- 1. Set the SEN signal at high level.
- **2**. After 100ms, set the system to serial data reception-waiting-state. Clear the incremental pulse up/down counter to zero.
- **3.** Receive eight bytes of serial data.
- 4. The system enters a normal incremental operation state approximately 50ms after the last serial data is received.

Detailed Signal Specifications

The number of revolutions is output in five digits.

DATA TRANSFER METHOD	START-STOP SYNCHRONIZATION (ASYNC)
Baud rate	9600bps
Start bits	1 bit
Stop bits	1 bit
Parity	Even
Character code	ASCII 7-bit code
Data format	8 characters, as shown below.

PAO Serial Data Specifications

- **NOTE:** 1. Data is "P+00000" (CR) or "P-00000" (CR) when the number of revolutions is zero.
 - 2. The revolution range is "+32767" to "-32768." When this range is exceeded, the data changes from "+32767" to "-32768" or from "-32768" to "+32767"

PSO Serial Data Specifications

The number of revolutions and the absolute position within one revolution are always output in five and seven digits, respectively. The data output cycle is approximately 40ms.

DATA TRANSFER METHOD	START-STOP SYNCHRONIZATION (ASYNC)	
Baud rate	9600bps	
Start bits	1 bit	
Stop bits	1 bit	
Parity	Even	
Character code	ASCII 7-bit code	
Data format	13 characters, as shown below.	

Number of revolutions: "0" to "9" Absolute position within one revolution: "0" to "9"

- NOTE: 1. The absolute position data within one revolution is the value before dividing.
 - **2.** Absolute position data increases during forward rotation. (Not valid in reverse rotation mode).

Incremental Pulses and Origin

Just as with normal incremental pulses, initial incremental pulses which provide absolute data are first divided by the frequency divider inside the servo amplifier and then output.

Setting the Pulse Dividing Ratio

Use the following parameter to set the pulse-dividing ratio.

PARAMETER	SIGNAL	SETTING (PPR)	DESCRIPTION
D-201		Setting Range: 0-65535	Speed/Torque Control,
Pn201 PG Divider	Default Setting: 2048	Position Control	

This parameter sets the number of output pulses for PG output signals (PAO, /PAO, PBO, /PBO).

Pulses from the motor encoder (PG) are divided by the number of pulses set here before being output.

The set value is the number of output pulses per revolution. Set this value according to the reference unit of the machine or controller to be used.

The setting range varies according to the encoder used.

Transferring Alarm Contents

When an absolute encoder is used, SEN signals can be utilized to transfer the alarm contents through PAO outputs to the host device as serial data.

Alarm Contents Output Example				
SEN Signal	SEN Signal TH" Error detection			
Digital Operator Display	run _{or}	Absolute encoder backup alarm		
PAO Serial Data	Incremental pulses	ALM81 CR		

NOTE: Refer to Appendix A 2.3 "Alarm Display Table" for a table of alarm contents

AB Encoders

The XtraDrive supports both square wave (A quad B) and serial (Yaskawa's standard) encoder types. Yaskawa serial encoders are automatically detected by the XtraDrive and require no additional settings (please refer to *Chapter 7.8 "Absolute Encoders"* for detailed information). In applications where standard A quad B encoders are used, certain parameters related to the motor and characteristics must be set manually. The following parameters should be set according to the specific encoder manually. Please note that these parameters become active only after restarting the driver.

NOTE: There are some parameters related to the motor electro-mechanical characteristics that cannot be set by the user. Contact the manufacturer in order to get a setup file containing these parameters.

Pn190.2 Setting	RESULTS	
0	Yaskawa Serial Encoder	
1	AB Encoder	

First set the AB encoder by Pn190.2 to 1.

Set Pn190.0 according to the following table:

Pn190.0 Setting	RESULTS		
0	0 Yaskawa AB model SGM		
1	Yaskawa AB model SGMP		
2 Other motor brand with A quad B encoder			

Absolute/Incremental encoder. Set the following parameter to choose between an absolute encoder and an incremental encoder.

Pn190.1 Setting	RESULTS
0	Incremental Encoder
1	Yaskawa absolute A quad B encoder

To use the absolute encoder properly you will need a battery that will power the encoder memory to keep its position.

C-pulse – Set the following parameter to choose between motor with and without C-pulse.

Pn190.3 Setting	RESULTS	
0	C-pulse used	
1	C-pulse not used	

Set the resolution of A quad B encoder in Pn192, Pn193. Note that the value in Pn192 should be set as the physical (optical) resolution, excluding the x4 multiplication done by the driver internally.

PARAMETER	Setting [pulses/rev]	Unit	SIGNAL
$D_{n}102$	Setting range 0-9999	Dulso / Dou	Pulse number of A quad B
Ph192	Default setting: 2048	Pulse / Kev.	encoder (Low bit)
Pn193	Setting range 0-419 Default setting: 0	Pulse*10000 / Rev.	Pulse number of A quad B encoder (High bit)

154 XtraDrive Users Guide

Set the direction of electrical phase. This parameter used to find the electrical phase in the AB encoder (other than Yaskawa); if you don't know the direction, just set unknown direction and XtraDrive will find it automatically

Pn191.0 Setting	RESULTS	
0	Unknown direction	
1	UVW	
2	UWV	

As mentioned before, the new parameter settings become active only after the driver has been restarted.

7.10 CONFIGURATION OF SERIAL COM M ANDS FOR AB ENCODERS

7.10.1. POSITION CONTROL

.1 Defining User Units for Motion Profiles

XtraDrive's built-in programming capability enables the user to define various motion profiles without the need for an external motion controller. Having first defined the relationship between the actual encoder resolution and the units employed, the user uses units such as radians, millimeters, etc. to write motion commands. These user units (aka Engineering Units) are automatically converted by XtraDrive to encoder units.

Each user unit is comprised of three different factors: Position units, Speed units and Acceleration units, where each factor has both a numerator and a denominator.

Use the following parameters to convert position units from [Encoder counts] to [User units]:

PARA	METER	Setting	Default Setting	Signal
Pnź	2B0	Setting range 0-65535	1	Position units ratio numerator
Pnž	2B1	Setting range 0-16383	0	Position units ratio numerator (high bits*)
Pn	2B2	Setting range 0-65535	1	Position units ratio denominator
Pnź	2B3	Setting range 0-16383	0	Position units ratio denominator (high bits*)

.2 Position Units

Use the following parameters to convert position units from [Encoder counts] to [User units]:

$$1 [User Position Unit] = U [counts] = \frac{Position units ratio numerator}{Position units ratio denominator}$$

U – The number of encoder counts in each user position unit. The number need not be an integer.

The maximum value of numerator (Pn2B0) or denominator (Pn2B2) is 65535. In cases where greater values are required, it is possible to use parameters Pn2B1 and Pn2B3 for storing the high bits of numerator and denominator, respectively, according to the following formula:

High
$$Bits = HB = Integer part of \frac{N}{65536}$$

Low $Bits = N - HB \cdot 65536$

Where N - required value.

EXAMPLE: A rotary motion system uses a motor with a 17-bit encoder. The user wants

17-bit encoder produces 131072 [counts] per revolution.

360 [degree] = 3600 [0.1 degree]

 $1 \left[0.1 \text{ deg } ree \right] = \frac{131072}{3600} \left[counts \right] = \frac{Position \text{ units ratio numerator}}{Position \text{ units ratio deno min ator}}$

First option:

Second option:

It is possible to reduce the
fraction so that both the
numerator and denominator are
smaller than 65536:
131072 / 3600 = 32768 / 900
\rightarrow Reduction
Pn2B0 = 32768
Pn2B1 = 0
Pn2B2 = 900
Pn2B3 = 0

Without reduction of the fraction: High Bits = HB = Integer part of N/65536 = Integer part of 131072 / 65536 = 2 Low Bits = N - HB*65536 = 131072 - 2 * 65536 = 0Pn2B0 = 0 Pn2B1 = 2 Pn2B2 = 3600 Pn2B3 = 0

Both options are equivalent.

.3 Speed Units

Use the following parameters to convert speed units from [encoder counts/msec] to [user speed units]:

PARAMETER	Setting	Default Setting	SIGNAL
Pn2B4	Setting range 0-65535	1	Speed units ratio numerator
Pn2B5	Setting range 0-16383	0	Speed units ratio numerator (high bits*)
Pn2B6	Setting range 0-65535	1	Speed units ratio denominator
Pn2B7	Setting range 0-16383	0	Speed units ratio denominator (high bits*)

Speed user units are calculated according to the formula:

$$1[\text{User speed unit}] = \left[\frac{U[\text{counts}]}{T[\text{ms}]}\right] = \left[\frac{\text{Speed units ratio numerator}}{\text{Speed units ratio denominator}}\right]$$

U – number of encoder counts in one speed unit.

T – time of speed units in ms.

Chapter 7

The maximum value of numerator (Pn2B4) or denominator (Pn2B6) is 65535. In cases where greater values are required, it is possible to use parameters Pn2B5 and Pn2B7 for storing the high bits of numerator and denominator, respectively, according to the following formula:

HighBit = HB = Integer part of $\left[\frac{N}{65535}\right]$

LowBits = $N - HB \cdot 65536$, where N- required value.

Example:

A rotary motion system uses a motor with a 17-bit encoder. The user wants to program the system in speed units of rpm:

17-bit encoder produces 131072[counts] per revolution.

U=131072

1[minute]=60000[ms]

T=60000

$$1[\text{rpm}] = \frac{U[\text{counts}]}{T[\text{ms}]} = \frac{131072[\text{counts}]}{60000[\text{ms}]} = \left[\frac{\text{Speed units ratio numerator}}{\text{Speed units ratio denominator}}\right]$$

First option:

It is possible to reduce the fraction so that both the numerator and denominator are smaller than 65536: 131072 / 60000 = 32768 / 15000 \rightarrow Reduction Pn2B4 = 32768 Pn2B5 = 0 Pn2B6 = 15000 Pn2B7 = 0 Second option:

Without reduction of the fraction: High Bits = HB = Integer part of N/65536 = Integer part of 131072 / 65536 = 2 Low Bits = N - HB*65536 = 131072 - 2 * 65536 = 0Pn2B4 = 0 Pn2B5 = 2 Pn2B6 = 60000 Pn2B7 = 0

Both options are equivalent.

.4 Acceleration Units

Use the following parameters to convert acceleration units from [encoder counts/ $(10 \text{msec})^2$] to [user acceleration units]:

PARAMETER	SETTING RANCE	DEFAULT Setting	Signal
Pn2B8	0-65535	1	Acceleration units ratio numerator
Pn2B9	0-16383	0	Acceleration units ratio numerator (high bits*)
Pn2BA	0-65535	1	Acceleration units ratio denominator
Pn2BB	0-16383	0	Acceleration units ratio denominator (high bits*)

Acceleration user units are calculated according to the formula:

$$1[\text{User acceleration unit}] = \frac{U[\text{counts}]}{T^2[(10*\text{ms})^2]} = \left[\frac{\text{Acceleration ratio numerator}}{\text{Acceleration ratio denominator}}\right]$$

where:

U - represents the number of encoder counts in one acceleration unit.

T - represents the time of acceleration unit in (10*ms)

The maximum value of numerator (Pn2B8) or denominator (Pn2BA) is 65535. In cases where greater values are required, it is possible to use parameters Pn2B9 and Pn2BB for storing the high bits of numerator and denominator respectively < according to the following formula:

High Bits = HB = Integer part of $\frac{N}{65536}$

Low Bits = N - HB * 65536

Where N – required value

Example:

A rotary motion system uses a motor with a 17-bit encoder. The user wants to program the system in units of rad/s^2 :

17-bit encoder produces 131072[counts] per revolution.

One revolution = 2π [rad]

 $U = 131072 / 2 \pi$

$$1 [s] = 1000[ms] = 100[10*ms] = T$$

 $T^2 = 10000$

$$1[rad/sec^{2}] = \frac{U[counts]}{T^{2}[(10 * ms)2]} = \frac{131072}{2\pi * 10000} = \frac{131072}{62832} = \left[\frac{\text{Acceleration units ratio numerator}}{\text{Acceleration units ratio denominator}}\right]$$

Example:

Without reduction of the fraction: High Bits = HB = Integer part of N/65536 = Integer part of 131072/65536 = 2Low Bits = N - HB * 65536 = 131072 - 2 * 65536 = 0Pn2B8 = 0 Pn2B9 = 2 Pn2BA = 62832Pn2BB = 0

.5 Setting Default Motion Profile Parameters

When using position control with serial commands, the user downloads the movements from the host using the XtraWare software (see *Section 4.3 "Programming the XtraDrive"* in the XtraWare User's Manual). XtraDrive has variables that define the motion profile. Initially the defaults of the Motion Profile Parameters are as described below. However, they can be modified through the host or by the program after the XtraDrive is turned ON.

Some of the value of these profile features are long (>16 bits) and are therefore stored in two parameters: the high bit parameter contains the integer part of the value divided by 65536, and the low bit parameter contains the remainder from this calculation.

.6 Profile Speed (Pn2A2, Pn2A3)

These parameters are used to define the default value of the profile speed variable. This variable is used to reach a target within a minimum period of time (set the time of movement to -1). The driver accelerates until it reaches this profile speed.

PARAMETER	Setting	Units	Default Setting	Signal
Pn2A2	Setting range 0-65535	User Speed	0	Work speed default
Pn2A3	Setting range 0-256	User Speed*65536	0	Work speed default

For example, for a profile speed of 200000 [Speed units], set the following parameters:

- Pn2A3 = integer part of 200000 / 65536 = 3
- Pn2A2 = 200000 3 * 65536 = 3392

.7 Profile Acceleration (Pn2A4, Pn2A5)

These parameters are used to define the default value of the profile acceleration variable. This variable is used in Position mode whenever the motor accelerates.

PARAMETER	Setting	SIGNAL
Pn2A4	Setting range 0-65535 Default setting: 0 [User Acceleration units]	Work acceleration default
Pn2A5	Setting range 0-256 Default setting: 0 [User Acceleration units*65536]	Work acceleration default

For example, for a profile acceleration of 200000 [Acceleration units], set the following parameters:

- Pn2A4 = integer part of 200000/65536 = 3
- Pn2A5 = 200000 3*65536 = 3392

.8 Jerk Smoothing Time (Pn2A6)

This parameter is used to define the default value of the jerk smoothing time variable. This variable is used to define the jerk smoothing time of a movement, i.e., it uses an average filter on the command pattern. For example, if the command pattern is a trapezoid, it will make it a S-curve pattern.

PARAMETER	SETTING [MICRO SEC]	SIGNAL
Pn2A6	Setting range 0-63999	Work jerk smoothing time
	Default setting: 0	default

Note: When the value exceeds 250 the smooth factor is cancelled.

.9 Quick Stop Deceleration (Pn2A8)

These parameters are used to define the deceleration of the motor when a STOP command is issued.

PARAMETER	Setting	Signal
Pn2A8	Setting range 0-65535 Default setting: 65535 [User Acceleration units]	Deceleration of motor in case of STOP command
Pn2A9	Setting range 0-256 Default setting: 256 [User Acceleration units*65536]	Deceleration of motor in case of STOP command

For example, for a deceleration of 200000 [Acceleration units], set the following parameters:

- Pn2A8 = integer part of 200000/65536 = 3
- Pn2A9 = 200000 3*65536 = 3392

.10 Motion End Window (Pn2C0)

This variable defines the default value of a window for position error to finish a motion. In case of a MOVED motion, the next motion in buffer will be executed after the command is finished and the position error (in user units) will be smaller than the value of this variable.

PARAMETER	Setting [User position units]	Signal
Pn2C0	Setting range:0-250 Default setting: 7	Motion end window default

161

7.10.2. TORQUE CONTROL

.1 Torque Slope (Pn2C1)

This parameter defines the default value for maximum torque variation. If the host sends a torque command, the actual torque will be smoothed by this rate and will not make a step in torque

PARAMETER	Setting [0.1% of rated torque/ms]	Signal
Pn2C1	Setting range 1-24000 Default setting: 24000	Torque slope

7.10.3 Hom ing

For serial commands, the homing procedure is different. You will need a host (PC) to perform the procedure.

To perform the homing procedure, proceed as follows:

- 1. Move the motor to its home position (see parameters below for this command).
- 2. Run command from PC (SET ZERO POSITION) to write the value of the encoder into the following parameters: Pn2C2 and Pn2C3. It takes two parameters to save a 32-bit encoder's value. After this command, the motor position at home position will be zero. The absolute encoder uses the value of the parameters as the offset to home position. If you are using an incremental encoder, you do not need to run this command from the PC because the encoder does not remember its position and does not use these parameters.
- **NOTE:** If after home (in absolute encoder), the command SET ZERO POSITION does not execute, then no offset is added to encoder.

It is possible to find home through the use of an obstacle (hard home). Hard home is found if the torque is raised to a certain limit as specified in HARD_HOME command variable (*refer to the XtraWare User's Manual P/N 8U0109*).

Pn2C7.0 Setting	R ESULTS (HOME SWITCH INPUT)
0	SI0 (CN1-40) (default)
1	SI1 (CN1-41)
2	SI2 (CN1-42)
3	SI3 (CN1-43)
4	SI4 (CN1-44)
5	SI5 (CN1-45)
6	SI6 (CN1-46)
7-F	Home failure

Home flags – To use a limit switch, define the following:Input for this limit switch by Pn2C7.0

PN2C7 SETTING	Results (Limit Switch Polarity)
0	Home switch input (0-F)
1	Reserved
2	Reserved
3	Reserved

7.10.4 **DIGITAL I/O**

In addition to the digital input parameters Pn50A - Pn50D, there is one more input for serial commands, Pn2D1 that work in the same way and can be related in the program.

You can define Emergency input to set servo OFF. Just define in parameter Pn2D1.0 the input for this emergency

Pn2D1.0 Setting	Results (Emergency Input)
0	SI0 (CN1-40)
1	SI1 (CN1-41)
2	SI2 (CN1-42)
3	SI3 (CN1-43)
4	SI4 (CN1-44)
5	SI5 (CN1-45)
6	SI6 (CN1-46)
7	Set Emergency always OFF
8	Set Emergency always ON (default)
F	Same as Pn50A.1 refer to page D-11

NOTE: In case of Pn2D1.0=8 you cannot set servo ON, because Emergency is always ON.

Chapter 7

In addition to digital output parameters Pn50E - Pn50F, there is one more output for serial command defined in Pn2D2 that work in the same way and can be related in the program.

PARAMETER	RESULTS
Pn2D2.0	COIN signal
Pn2D2.1	Reserved
Pn2D2.2	Reserved
Pn2D2.3	Reserved

Pn2D2.0 is defined as the position complete output signal in serial command (Position Control). It indicates when the motor has reached the target position.

PN2D2.0 SETTING	Results (Output From)
0	Disabled (default)
1	SO1 (CN1-25,26)
2	SO2 (CN1-27,28)
3	SO3 (CN1-29,30)

7.10.5 AUTO TUNING

For the auto tuning procedure refer to the XtraWare User Manual. Auto Tuning is performed by moving forward and reverse, while parameters are being tuned. The following parameters define the profile of this movement.

PARAMETER	Setting	Signal
Pn2C8	Setting range 200-2000 Default setting: 400 [ms]	Delay between two movements of automatic tuning (t_1)
Pn2C9	Setting range 0-100 Default setting: 50 [% of maximum speed]	Define the maximum speed of auto tuning movements.
Pn2CA	Setting range 1-1000 Default setting: 50 [ms]	Define the time of acceleration to reach the maximum speed of the movement. (t_2)
Pn2CB	Setting range 0-1000 Default setting: 50 [ms]	Define the plateau time (time of constant speed) of auto tuning movement. (t_3)

7.11 AUTO RUNNING A USER PROGRAM

After downloading a user program to the driver, it is possible to run it automatically every time the driver turns ON, by setting the parameter Pn2CC to the program label number of the starting program. With the default setting 0 the program auto running is disabled.

PARAMETER	Setting	RESULTS
Pn2CC	Setting range: 0 to 99 Default setting: 0 (auto run disabled)	Starts user program automatically at set label when turning ON XtraDrive's power.

SELECTION OF CONTROL MODE

8.1

The XtraDrive servo amplifier offers speed control, position control, torque control, and the other control modes shown in the following table.

The following parameter is used to set the control mode.

Parameter	Signal	Setting	Control Mode
Pn000.1	Control Method Selection	Default Setting: D	Speed/Torque Control, Position Control, NCT

PN000.1 Setting	Control Mode
0	Speed Analog – an external analog speed signal reference is supplied. Signal reference range is +/-2 to +/-10V/ rated motor speed. See <i>Chapter 7.2.1 "Speed Reference"</i> .
1	Control from Option Board – system operation is controlled by an external application board (Note: XtraDrive must be configured to include CN-10 connector from the factory to allow for option board capability) See <i>Chapter 7.2.1 "Speed Reference"</i> .
2	Torque (analog) – an external analog torque signal reference is supplied. Signal reference range is +1 to +/-10V/ rated motor torque. See <i>Chapter 7.2.7 "Using Torque Control"</i> .
3	Speed Contact – The speed is controlled by selecting digital I/O and setting preset speeds in the Servo Amplifier. See <i>Chapter 7.2.6 "Contact Input Speed "</i> .
4	Speed (Contact /Analog) – Speed is controlled by both the analog reference and Digital Inputs. See <i>Chapter 7.2.6 "Contact Input Speed "</i>
5	Not Used
б	Speed (Contact/Torque Analog) - Speed is control using the torque Analog and the preset speeds and digital Inputs. See <i>Chapter 7.2.8 "Torque Feed Forward "</i>
7	Not Used
8	Not Used
9	Torque - Servo is torque controlled only uses the analog speed input. See <i>Chapter 7.2.7 "Using Torque Control"</i> .
A	Speed Control (Analog/Zero Clamp) - The Speed of the servo is controlled by the Speed Analog input with configurable dead band. See <i>Chapter</i> 7.5.3 "Using Zero Clamp".
В	Not Used
С	NCT Position Control (Pulse Train) – external pulse train signals are used as position reference for the servo system. See <i>Chapter 7.2.2 "Position Reference"</i> .
D	NCT Programming Mode – control of the servo system utilizes the on-board indexer, and full programmability of the XtraDrive

Whenever Speed Control or Position Control is selected, the Loop Gain parameters should be adjusted in order to ensure a stable and smooth operation.

Adjustment of Speed Control using Analog Input or Contact Input is described below in *Chapter 8, section 8.2*, for setting cases of Pn000.1 = 0, 3, 6, 9 and A.

Adjustment for Position Control or NCT Velocity Control is described below in *Chapter 8.3*, for setting cases of Pn000.1=8, B, C and D.

ANALOG INPUT OR CONTACT INPUT VELOCITY CONTROL

This section provides technical information for operation of servo motors in Velocity Control mode with Analog Input.

8.2

The Identical Control principle is applied in case of Contact Input or Analog Input. In case of Contact Input, the velocity command value is retrieved from one of the predefined values, according to the Contact Input setting.

Instructions and descriptions referring to Analog Input in the following sections also apply to Contact Input.

PRINCIPLE AND BLOCK DIAGRAM OF THE VELOCITY CONTROL

8.2.1

8.2.2 PARAMETERS OF THE VELOCITY CONTROL

The following parameters are related to Velocity Control:

- Pn305 \rightarrow Soft Start Acceleration time
- Pn306 \rightarrow Soft Stop Deceleration time
- Pn103 \rightarrow Inertia Ratio
- Pn300 \rightarrow Speed Reference Input gain
- Pn100 \rightarrow Speed Loop Gain
- Pn101 \rightarrow Speed Loop Integral Time constant
- Pn401 \rightarrow Torque Reference Filter Time Constant
- $Pn408.0 \rightarrow Notch Filter activation$
- Pn409 \rightarrow Notch Filter Frequency
- Pn40A \rightarrow Notch Filter Width

8.2.3 SETTING THE INPUT GAIN

Parameter 300 defines the ratio between Analog Voltage and equivalent speed command.

Normally, this parameter should be set so that a 10Volt input will produce a speed command slightly superior to the maximum allowable speed of the system.

The units of that parameter are (0.01Volt)/(Rated Speed)

Example: With the default setting 600, 6Volt input will result in a rated speed command.

8.2.4 Adjusting Offset

The servo system does not operate smoothly if reference voltage from the host controller or external equipment has a reference offset value close to 0V. In that case, adjust the reference offset value to 0V.

Reference Offset Adjustment

The following two methods are provided to reset the reference offset value to 0V.

- Reference offset automatic adjustment
- Reference offset manual adjustment

If a position loop is formed in the host controller, be sure to make a manual offset adjustment and no automatic reference offset adjustment.

Refer to the following sections in *Chapter 9 "Using the Panel Operator"* for a detailed description of reference offset adjustment.

Adjustment Method	DETAILED DESCRIPTION
Automatic	9.2.3 Automatic Adjustment of the Speed and Torque Reference Offset
Manual	9.2.4 Manual Adjustment of the Speed and Torque Reference Offset

8.2.5 Using the Soft Start Function

The soft start function adjusts progressive speed reference input inside the servo amplifier so that acceleration and deceleration can be as constant as possible. To use this function, set the following parameters

PARAMETER	Signal	Setting (ms)	DESCRIPTION
Pn305	Soft Start Acceleration Time	Setting Range: 0 to 10000 Default Setting: 0	Speed Control
Pn306	Soft Start Deceleration Time	Setting Range: 0 to 10000 Default Setting: 0	Speed Control

In the servo amplifier, a speed reference is smoothed by the acceleration or deceleration value set in Pn305 or Pn306 to provide speed control.

The soft start function enables smooth speed control when non-progressive speed references are input or when contact input speed control is used.

Set both Pn305 and Pn306 to "0" for normal speed control, i.e when the speed reference does not need to be smoothed.

Set these parameters as follows:

- Pn305: The time interval from the time the motor starts until the maximum speed is reached.
- Pn306: The time interval from the time the motor is operating at the maximum speed until it stops.

8.2.6 LOAD INERTIA SETTING

In order to use values of Loop Gains that are closely related to the characteristics of your system, loop gains are normalized in Hertz. This normalization of parameters is done according to the assumed inertia of the system.

You should do a rough estimation of the inertia of the load for your system and input its value in the Load Inertia Ratio parameter (Pn103).

Set Pn103 to the following value.

$$Pn103 = \frac{Motor Load Inertia (J_L)}{Servomotor Rotor Inertia (J_M)} \times 100\%$$

PARAMETER	SIGNAL	Setting (%)	Application
Pn103	Inertia Ratio	Setting Range: 0 to 10000 Default Setting: 0	Speed/Torque Control, Position Control

The following shows how to calculate the Load Inertial ratio for different mechanical systems:

<u>Estimation of Equivalent Load (J_{load})</u>
Case 1_ Load is a cylinder directly mounted or coupled to the motor axis:
$J_{load} = \frac{\pi \times \rho \times l \times d^4}{32}$
$ ho$ is the density of the load material[kg/m^3].
L is the length
D is the diameter of the load [m].
Case 2_ Load is driven through a gear with ratio N:
Equivalent load on motor is:
$J_{load} = \frac{J}{N^2}$
Case 3: Load is a mass driven by a ball screw having pitch:
$J_{load} = M \times Pitch^2$ + Jscrew+Jcoupling
$J_{load}, \ \rightarrow \ \text{Kg.m}^{\ 2}$, $M \ \rightarrow \ \text{Kg}, \ Pitch \ \rightarrow \ \text{meter/radian}$
Other Cases: Make your own rough load inertia evaluations.

8.2.7

Adjusting Speed Loop Gain

The adjustment of Speed Loop Gains is an iterative process in interaction with the adjustment of Notch Filter and Torque Filter. Before executing it, you should read sections 8.2.8 and 8.2.9.

The purpose of the Speed Control is to maintain the Speed Error, i.e. the difference between Internal Speed Command and Actual Speed, as small as possible.

This is obtained by raising the Speed Loop Gain Kv (Pn100) and the Speed Loop Integration time Ti(Pn101).

However, if Kv is too high, or Ti is too small, oscillations may occur. Usually, a too high Kv will produce high frequency oscillations, while a too small Ti will produce lower frequency oscillations.

PARAMETER	SIGNAL	Setting	Application
Pn100	Speed Loop Gain (K _v)	Setting Range: 1 to 2000Hz Default Setting: 40Hz	Speed/Torque Control
Pn101	Speed Loop Integral Time Constant (T _i)	Setting Range: 15 to 51200 x 0.01ms Default Setting: 2000 x 0.01ms	Speed/Torque Control

Tuning can be done by observing the load and listening to the acoustic noise of the eventual vibrations. For more precise tuning, you may monitor the velocity error using an oscilloscope and the analog monitoring outputs provided by the XtraDrive. *Refer to Chapter 8.4 "Analog Motors"*.

The tuning procedure is as follows:

- 1. Start with a Ti at maximum value and a low value of Kv, so that system will be stable upon Servo Enabling.
- 2. Enable the Servo, then progressively rise the value of Kv, until oscillations or overshoots are observed.
- 3. Decrease Kv by about 10 to 20%.
- 4. Decrease Ti until lower frequency oscillations or overshoots are observed, then raise Ti back by about 20%

In the particular case where position control is done in a host system and outputs an Analog command for feedback:

It is possible to increase input gain in order to increase the position loop gain of your system.

These tuning steps should be repeated each time torque filter or notch filter settings are modified

If torque filter and notch filter are optimally tuned, then loop gain can be raised to a higher value, and the speed error will be smaller.

.8 SETTING THE TORQUE REFERENCE FILTER TIME CONSTANT

If there is machine vibration, which may be caused by the servo drive, try adjusting the filter time constant in Pn401. This may stop the vibration.

PARAMETER	Signal	Setting (x 0.01ms)	Application
Pn401	Torque Reference Filter Time Constant	Setting Range: 0 to 65535 Default Setting: 100	Speed/Torque Control, Position Control

The constant above is the filter time constant of the torque reference to be set in the servo amplifier. The smaller the value, the faster the speed control response will be. There is, however, a limit, depending on machine conditions.

In order to find the optimal value of the torque filter, repeat steps 1 and 2 of previous section for each new try of the torque filter. Finally select the optimal torque filter value as the one who results in the highest Kv.

8.2.9 NOTCH FILTER

Vibration in the machine can sometimes be eliminated by using a notch filter for the frequency at which the vibration is occurring.

PARAMETER	Signal	Setting	Application
Pn408.0	Notch Filter Selection	Default Setting: 0	Speed/Torque Control, Position Control

This parameter can be set to enable the notch filter.

PN408.0 SETTING	RESULT
0	None.
1	Enables notch filter for torque reference.
2	Use net notch (not implemented)
3	Use both.

Use the following parameter to set the frequency at which the filter is effective.

PARAMETER	SIGNAL	Setting(Hz)	Application
Pn409	Notch Filter Frequency	Setting Range: 50 to 2000 Default Setting: 2000	Speed/Torque Control, Position Control
Pn40A	Notch Filter Width	Setting Range: 70 to 1000 Default Setting: 70	Speed/Torque Control, Position Control

8.2.10 GAIN SETTING REFERENCE VALUES

This section describes servo gain reference values.

Refer to the following for optimal gain adjustments according to the rigidity of the mechanical system. Refer to these values and use the previously mentioned methods to make gain adjustments. These values are for reference only and do not mean that the mechanical system has good response characteristics or is free from oscillation in the specified ranges.

Observe the response by monitoring the response waveform and make the optimal gain adjustments. If the rigidity of the machinery is high, gain increments exceeding the described ranges are possible.

Machines with High Rigidity

These machines are directly connected to ball screws.

Examples: Chip mounting machine, bonding machine, and high-precision machine tool

Speed Loop Gain (Pn100)	Speed Loop Integral Time Constant (Pn101)	
50 to 70Hz	5 to 20ms	

Machines with Medium Rigidity

Machines driven by ball screws through speed reducers or long-length machines directly driven by screws.

Examples: General machine tool, transverse robot, and conveyor

Speed Loop Gain (Pn100)	Speed Loop Integral Time Constant (Pn101)	
30 to 50Hz	10 to 40ms	

Machines with Low Rigidity

These machines are driven by timing belts, chains or machines with harmonic gear reducers.

Examples: Conveyor and articulated robot

Speed Loop Gain (Pn100)	Speed Loop Integral Time Constant (Pn101)	
10 to 20Hz	50 to 120ms	

IMPORTANT

- When the inertia ratio is larger than 10, start gain adjustments with the position and speed loop gains slightly below the ranges given above and the speed loop integral constant slightly over the range.
- When the inertia ratio is much larger, start the gain adjustments with the position and speed loop gains set to the smallest values and the speed loop integral constant to the largest value in the ranges given above.

In speed control operation, the position loop gain is set through the host controller. If that is not possible, adjust the position loop gain with the speed reference input gain in Pn300 in the servo amplifier. In speed control operation, the position loop gain set in Pn102 is enabled in zero-clamp mode only. Position loop gain Kp can be obtained from the following formula.

$$K_{p} \ge \frac{V_{s}}{\epsilon}$$

Where: $K_{p}(s^{-1})$:	Position Loop Gain
V _s (pps) :	Constant Speed Reference
ɛ (Pulse) :	Constant Error: The number of accumulated pulses of the error counter at the above constant speed.

8.3 NCT POSITION CONTROL

Position control can be performed by PULSE TRAIN (Pn000.1=C) or by SERIAL commands (Pn000.1=D).

XtraDrive provides an automatic tuning function. In case of auto- tuning, only a rough estimation of load inertia is required. Refer to *Chapter 8.3.1 "For the Evaluation of the Load Inertia*", then to *Chapter 7.10.5. for "Auto Tuning"*.

8.3.1 LOAD INERTIA SETTING

In order to use values of loop gains that are closely related to the physical characteristics of your system, the loop gains are normalized in Hertz. This normalization of parameters is done according to the assumed inertia of the system.

Furthermore, the controller includes an automatic set up procedure that set parameters according to load size. This setting will be satisfactory in most cases. In case more precise tuning is desired, this first set can be used as a starting point

You can do a rough estimation of the inertia of the load for your system and input its value in the Load Inertia Ratio parameter (Pn103).

Set Pn103 to the following value:

$$Pn103 = \frac{Motor Load Inertia (J_L)}{Servomotor Rotor Inertia (J_M)} \times 100\%$$

PARAMETER	Signal	Setting (%)	APPLICATION
Pn103	Inertia Ratio	Setting Range: 0 to 10000 Default Setting: 0	Speed/Torque Control, Position Control

The following wizard will help you to calculate your load inertia.

8.3.2 POSITION CONTROL BLOCK DIAGRAM

The following is a general block diagram of the NCT. The NCT algorithm includes specific non-linear functions for each one of the blocks shown here, so that this block diagram should be used for general understanding only.

8.3.3 NCT GAIN PARAMETERS

The following are the main parameters of NCT servo control:

Kd	Pn1AC	Differential gain
Кр	Pn1AA	Proportional gain
Kiv	Pn1AB	Additional proportional gain
Kis	Pn1A9	Integral feedback gain
	>	

These parameters should be tuned in the order of the list above.

Kd (Pn1AC) Range 0-2000 [Hz] default 30:

This parameter is equivalent to a velocity loop gain. It produces damping of the movement.

The higher this parameter can be increased, the better the final tuning will be. However, the increase is limited by the flexibility of the mechanical system driven.

A too high value of Kd will cause high frequency oscillations of the system.

For tuning, raise the value of that parameter progressively until oscillations are observed or acoustic noise is heard. Then reduce back to a safe value (around 10 to 20%, depending on the system).

Kp (Pn1AA) Range 0-500 [Hz] default 40:

This parameter sets the position loop gain.

For tight control, increase it until overshoot or oscillations are observed. Then reduce back and set according to the level of overshoot/undershoot desired.

Value 30*(Jtotal/Jmotor)^0.5 can be used as a reference value.

Kiv (Pn1AB) range 0-500 [Hz], default 30:

This parameter is an additional position loop gain. Using proprietary NCT technique, this gain increases stiffness and reduces the position error during the trajectory following, without causing overshoot or oscillations.

Proceed as for Kp for tuning. Normally, the range of this parameter is $Kp/2 \ < \ Kiv < Kp$

Kis (Pn1A9) range 0-500 [Hz] default 40:

This parameter is the equivalent of the integral loop gain. It cancels the position error at stop and minimizes it during movement.

As for previous gains, increase until vibrations occur, then reduce back to a safe value.

The oscillations observed when a too high Kis is used are usually at lower frequency.

Ka (Pn1AD) range 0-500 [%] default 0. Filter Pn1AE range 0-2500 [0.01ms] default 300:

This parameter is the acceleration gain. It can be used when there is a high-resolution encoder. In most cases, a 0 value is used, but in some cases it can improve the control quality.

Kff (Pn1AF) range 0-200 [%] default 0. This parameter is used only in a serial command (Pn000.1=D):

This parameter is the feed forward of command acceleration into the command torque. Tune this parameter after you finished tuning the previous parameters. It reduces position error during movement and during acceleration and deceleration phase.

8.3.4 OCA - OSCILLATION CANCELING ALGORITHM

VERSION	XTRADRIVE VERSION	XTRAWARE Version
The following description relates to:	2.91	2.6.1

General Description

OCA is used to dynamically eliminate vibrations during motion. The frequency of Speed Error vibrations (within the range of 500 - 2000 Hz) detected by the driver are eliminated on the fly, allowing increase of gain and reduction of noise.

Recommendations:

- Since autotuning takes the OCA into account, it is advisable to run autotuning in the same OCA mode (active or non-active) as that in which the system works.
- Use a very low Torque Filter when the OCA is active.
- It is possible to activate OCA together with the notch filter.
- In cases of stiff machines where coupling with the load is very strong (no backlash, no coupling or very stiff coupling), better performance can be obtained without OCA.

PARAMETER	NAME	Setting	DESCRIPTION	DEFAULT
D=2D4	Oscillation	0	OCA is not active	1
Pn2D4 Canceling Mode	1	OCA is active		

Additional Parameters Tuning

After having set the default value for a given load, additional tuning may be done. Typically, the following parameters can be further tuned:

Torque Filters	Pn1A2-Pn1A5	To prevent vibrations with flexible coupling and poor damping.
Command Smoothing	Pn216	To smooth movement in case of flexible system.
Tightness	Pn1A0	To increase/decrease gain.
Variable gain	Pn1B5-Pn1B9	To increase gain during movement.
Flexible system	Pn1BB-Pn1BD	To compensate the overshoot and smooth the movement.

8.3.6 FILTERS

Filters are used to avoid vibrations, thus allowing a higher value of loop gain. Filters should be set in an iterative way, where each time a new filter value is tried; the velocity loop gain is re-tuned. Typically, the final value selected for the filter will be the one that allows the highest Kd.

Kd Filter (Pn1A2), Range 30-3200[0.01ms], Default 40:

This parameter sets a low pass filter on differential gain, a good starting value is about Pn103/10, where the minimum value is 30 [0.01ms]. A low value for this parameter will make noise in high frequency.

Typically, this parameter will have to be increased if load coupling is flexible, and damping is poor.

Torque Filter (Pn1A4), Range 0-2500[0.01ms], Default 20:

This parameter sets a low pass filter on torque command. A good starting value is about Pn103/10, if you use notch filter (Pn408.0=1) (see Chapter 8.2.9 "Notch Filter"). It is better not to use torque filter or to use a small value.

Typically, this parameter will have to be increased if load coupling is flexible, and damping is poor.

This parameter should be set to a value only slightly higher than the value at which oscillations disappear. Using an unnecessary high value will degrade the control quality. Typically, chose the value that allows the highest value setting of Kd.

Second Order Torque Filter (Pn1A5), Range 0-1000 [0.1%], Default 0:

This parameter is a part of the second order torque filter. It has good influence in many cases, even if the first order torque filter is not active.

After tuning Pn1A4, raise this parameter progressively until vibrations occur. In many systems, values for this parameter will be in the 500-700(0.1%).

Command Smoothing (Pn216), Range 0-65536 [0.1ms], Default 0:

In case of a flexible system, if command acceleration is not applied progressively, the system will oscillate around the command position after every discontinuity of the command acceleration (even if the oscillation is not seen). The command-smoothing smooths the command acceleration to avoid these oscillations.

Using a command filter will delay the arrival of the command to the final target position. The value of this filter should be set higher than the period of self-oscillations, but not too high to keep good settling time.

Note: This command is cancelled when Jerk value is greater than or equal to 250.

8.3.7 FLEXIBLE SYSTEM PARAMETERS

K_{rf}Spring (Pn1BB) Range 10-2000 [Hz] default 2000:

This parameter compensates the position error during the acceleration and deceleration phase and the overshoot observed when stopping at the end of a deceleration phase. Typically, this overshoot is caused by the elasticity of the system; a wind up occurs during the deceleration phase and relaxes after stop. The KffSpring parameter compensates for that wind up.

The frequency of this parameter relates to the self-oscillation frequency of the system. It can be adjusted to avoid overshoot and minimize settling time.

Default value is 2000 Hertz. This value is well beyond the frequency response of usual systems, so that it has no influence.

To adjust, decrease this value progressively, while monitoring the position error, until overshoot is canceled or position error in the acceleration and deceleration phase are minimized.

KfbSpring (Pn1BD) range 10-2000 [Hz] default 2000:

This parameter compensates the vibrations of the motor, it smooths the control in case of a flexible system. Usually it should be tuned to the low resonance of the system.

You can tune this parameter by progressively decreasing its value until vibrations occur. Then use a higher value for setting ($\sim 20\%$).

183

8.3.8 GAIN FACTOR

Tightness (Pn1A0), Range 0-500[%], Default 60:

This parameter changes the frequencies of feedback parameter linearly, keeping their relative ratio, so that system rigidity can be changed without getting unstable. A good starting value is 60[%].

After setting the default values for load, one can increase or decrease the stiffness of the servo control by changing this parameter.

This can be done while monitoring the position error during the movement and thus choosing the optimal value for the system application.

Maximum of Variable Gain MAXKG (Pn1B5), Range 100-1000 [%], Default 160:

This parameter sets the maximum variable gain during movement. To cancel variable gain, set this parameter to 100[%]. To use variable gain, increase it, usually 160-200% is enough. If one sets this parameter to 200%, it means that gain can be raised to 200% of the written parameter value during movement.

8.3.9 INTEGRAL CLEAR PARAMETERS

Integral Clear Mode (Pn1A7, digit 0):

This parameter activates a special treatment of integral at the end of a decelerating ramp.

When using a command having a trapezoid speed profile, at the end of the deceleration there is a discontinuity of acceleration; at this point, deceleration abruptly changes its value from maximum to zero. Normally, this would create an overshoot of the system. This discontinuity is compensated by addition of a calculated value to the integral at that particular time, thus avoiding the overshoot.

Software detects the end of a command deceleration phase, calculates the compensating value and adds it to the integral.

o In case of point-to-point movements with trapezoid profile: set to 1. o In case of very smoothed command acceleration: reset to zero.

Integral Clear Timing (Pn1BF), Range 1-15, Default 3:

This parameter defines the timing of a clear integral. Reducing this parameter will delay the clear integral, and increasing will speed up the clear integral.

Integral Offset Averaging Time (Pn1C0), Range 0-25[ms], Default 0:

This parameter defines the time needed to calculate a steady torque at stop. This value is used to execute a more precise integral modification at the end of the movement.

In horizontal systems, this parameter should be zero.

8.3.10 TUNING PROCEDURE FOR POSITION CONTROL PARAMETERS

System Requirements

Use any command input to the XtraDrive, and watch the performance of control (see analog output).

It is recommended to use commands that include a constant speed section (plateau of trapezoid for example). Potential vibrations of the system may not be observed during the tuning procedure if no constant speed section is used.

Tuning is done while checking the items of the control quality required for the specific application. These items can vary, depending on the application.

Typically, items of control quality are:

- **Smoothness:** Can be estimated by the behavior of the position error with time. If the position error changes sign rapidly and/or with great amplitude, then smoothness is poor.
- **Settling time:** Can be measured as the time it takes to reach a zero position error after the command speed reaches zero.
- Stiffness: Can be measured by monitoring the position error amplitude resulting from a perturbation. This perturbation can be an abrupt change in command acceleration, for example by using a triangle shape for the speed profile of a command, or a physical impact applied on shaft or load.
- **Overshoot:** Can be measured by the sign of position error after movement stops.

The Tuning Steps

During each tuning step, the quality of control is monitored with the user-required movements according to the user's criteria.

- 1. Use Fast Tuning (see XtraWare Manual, *section 4.6.3 "Performing Fast Tuning"*), in order to load a starting set of parameters for the given load.
- **2.** Tune the following parameters:
 - a) Set the Torque Filter (Pn1A4) to zero.
 - **b**) Raise **Kd** (**Pn1AC**) to the maximum possible value for a smooth movement, then decrease that value by about 20%.
 - c) Increase the torque filter and repeat Step b. Continue increasing the torque filter until the maximum value of Kd is obtained.
 - d) Raise Kp(Pn1AA) to the maximum value that gives a smooth movement, then decrease that value by about 20%.
 - e) Raise Kis (Pn1A9) till there is no overshoot.
 - f) Increase the Second Order torque filter (Pn1A5) to obtain smoothed movement, very helpful in flexible systems. You can increase it till 60 to 70 percentages.

- g) If necessary, repeat sub-steps **b**) to **d**) until an optimal value is obtained.
- 3. Tune flexible system parameters.
 - a) **K**_{ff}**Spring (Pn1BB)**. This parameter may be used to suppress overshoot, to reduce it progressively, or to cancel overshoot.
 - b) KfbSpring (Pn1BD). This parameter may be used to suppress oscillations in a flexible system. Default value is 2000Hz. Decrease progressively, or try values close to the suspected low self-oscillation frequencies.
- 4. Advanced parameter:

Integral Offset Averaging Time (Pn1C0). If this parameter is set (>0), then each time the system is stopped (no command input), an average value of the steady torque is calculated. This value is then used as an adaptive offset for the torque command. The averaging time for this offset is set by the value of Pn1C0. Increase it if you have some force on the motor in a steady state, like gravity.

8.4

ANALOG MONITOR

The analog monitor can be used to observe a variety of analog voltage signals. Analog monitor signals must be observed through the CN5 connector using the Yaskawa P/N DE9404559 cable.

CABLE COLOR	SIGNAL NAME	DESCRIPTION
White	Analog monitor 1	Torque reference: 1V/100% rated torque
Red	Analog monitor 2	Motor speed: 1V/1000 rpm
Black (two wires)	GND (0V)	

Analog monitor signals can be selected with parameters: Pn003.0 (if Pn006.1=0) and Pn003.1 (if Pn007.1=0) or Pn006.0 (if Pn006.1=1) and Pn007.0 (if Pn007.1=1).

PARAMETER	SIGNAL	Setting	DESCRIPTION
Pn003.0	Analog Monitor 1	Default Setting: 2	Speed/Torque Control, Position Control
Pn003.1	Analog Monitor 2	Default Setting: 0	Speed/Torque Control, Position Control

SETTINGS IN PN003.0	DESCRIPTION		
AND PN003.1	MONITOR SIGNAL	OBSERVATION GAIN	
0	Motor speed	1V / 1000rpm	
1	Speed reference	1V / 1000rpm	
2	Torque reference	1V / 100% rated torque	
3	Position error	0.05V / 1 reference unit	
4	Position error	0.05V / 100 reference unit	
5	Reference pulse frequency (converted to rpm)	1 V / 1000rpm	
6	Motor speed	1 V / 250rpm	
7	Motor speed	1 V / 125rpm	

The following monitor signals can be observed.

NOTE:1. In the case of torque or speed control mode, the position error monitor signal has no meaning.2. The output voltage range of the analog monitor is ±8V maximum. The polarity of the
voltage will be changed if ±8V is exceeded

SETTINGS IN PN006.0	DESCRIPTION		
AND PN007.0	MONITOR SIGNAL	OBSERVATION GAIN	
0	Servo position error	1V / 10 Encoder Counts	
1	Servo position error	1V / 5 User Units	
2	Target speed	1V / 500 rpm.	
3	Smoothed target speed	1V / 500 rpm.	
4	Torque	10V / Max. Torque	
5	Motor speed	1V / 500 rpm.	
6	Target acceleration	10V / Max. Acceleration	

Note: If the monitored signal does not fit the oscilloscope, it can be resized by the magnification parameter Pn006.2 for channel 1 and by Pn007.2 for channel 2. Refer to the following table for details:

SETTINGS IN PN006.2 AND PN007.2	OUTPUT MAGNIFICATION
0	x1
1	x10
2	x100
3	$\frac{1}{x^{10}}$
4	$\frac{1}{x^{100}}$

188 XtraDrive Users Guide

Page is intentionally left blank - for you to fill with your own notes.

Using the Operator Panel

9.1 **BASIC OPERATION**

This section provides information on the basic operation of the built-in digital operator panel for setting operating conditions.

9.1.1 OPERATOR PANEL

A built-in operator panel incorporating a panel indicator and switches is located on the front panel of the servo amplifier.

190 XtraDrive Users Guide

Display Messages

The following messages appear when using the Panel Operator.

......When a function is executed.

Кеу	NAME	FUNCTION
	UP ARROW Down Arrow	 Press this key to set parameters or display the set values of parameters. Press the Up Arrow key to increase the set value Press the Down Arrow key to decrease the set value Press the Up and Down Arrow keys together to reset a servo alarm.
MODE/SET	Mode/Set	Press this key to select the Status Indicator mode, Auxiliary Function mode, Parameter Setting mode, or Monitor mode. See figure below.
DATA/	Data/Shift	 Press this key to set each parameter or display the set values of parameters. This key is used for selecting the editing (flashing) digit or data setting

9.1.2 **R**ESETTING SERVO ALARMS

Servo alarms can be reset using the digital operator.

Using the Built-In Operator Panel

Press the Up Arrow \blacktriangle AND Down Arrow \blacktriangledown keys together in Status Display mode.

The alarm can be reset with CN1-44 or /ALM-RST signal input. Refer to *Chapter 7.6.1 "Using Servo Alarm and Alarm Code Outputs"*.

The servo alarm will be reset if the control power supply is turned OFF.

IMPORTANT

If an alarm is ON, reset the alarm after eliminating the cause of the alarm first. See *Appendix A 2.1 "Troubleshooting Problems with Alarm Displays"*.

9.1.3

BASIC MODE SELECTION

9.1.4 STATUS DISPLAY MODE

In Status Display mode, bit data and codes are displayed to indicate the status of the servo amplifier.

Selecting Status Display Mode

The digital operator goes into Status Display mode when the digital operator is turned ON.

Data in Status Display Mode

Screen contents in Status Display mode are different for Speed, Torque, and Position Control modes.

Speed and Torque Control Mode

* This indicator is always lit when the XtraDrive is in Torque Control mode

The following tables list and explain the meanings of bit data and code displays in Speed and Torque Control modes.

Bit Data and Meanings in Speed and Torque Control Mode			
Bit Data	Meaning		
Control Power ON	Lit when servo amplifier control power is ON.		
Baseblock	Lit for baseblock. Not lit when servo is ON.		
Speed Coincidence	Lit when the difference between motor speed and reference speed is the same as or less than the value set in Pn503. (The default value set in Pn503 is 10rpm).		
/TGON	Lit if motor speed exceeds preset value Preset value: Set in Pn502. (Default setting is 20rpm).		
Speed Reference Input	Lit if input speed reference exceeds preset value. Specified value: Set in Pn502. (Default setting is 20rpm)		
Torque Reference Input	Lit if input torque reference exceeds preset value. Preset value: 10% rated torque is default setting		
Power Ready	Lit when main power supply circuit is operating at normal level. Not lit when power is OFF.		

193

Codes and Meanings in Speed and Torque Control Mode				
Code	Meaning			
66	Baseblock Servo OFF (motor power OF	F)		
run	Run Servo ON (motor power ON)			
Pot	Forward Run Prohibited CN1-42 (P-OT) is OFF.	Refer to Chapter 7.1.2 "Setting the Overtravel Limit Function"		
not	Reverse Run Prohibited CN1-43 (N-OT) is OFF.	Refer to Chapter 7.1.2 "Setting the Overtravel Limit Function"		
<u>R02</u> R03	Alarm Status Displays the alarm number.	Refer to Appendix A 2.1 "Trouble Shooting Problems with Alarm Displays"		

Position Control Mode

The following tables list and explain the meanings of bit data and code displays in Position Control modes.

Bit Data and Meanings in Position Control Mode		
Bit Data	Meaning	
Control Power ON	Lit when servo amplifier control power is ON.	
Baseblock	Lit for baseblock. Not lit when servo is ON.	
Positioning Completed	Lit if error between position reference and actual motor position is below preset value. Preset value: Set in PN500. (Default setting is 7 pulses).	
/TGON	Lit if motor speed exceeds preset value. Preset value: Set in Pn502. (Default setting is 20rpm).	
Reference Pulse Input	Lit if reference pulse is input.	
Error Counter Clear Input	Lit when error counter clear signal is input.	
Power Ready	Lit when the main power supply circuit is operating at normal level. Not lit when power is OFF.	

9.1.5

Codes and Meanings in Position Control Mode			
Code	Meaning		
66	Baseblock Servo OFF (motor power OFF)		
run	Run Servo ON (motor power ON)		
Pot	Forward Run Prohibited CN1-42 (P-OT) is OFF.	Refer to Chapter 7.1.2 "Setting the Overtravel Limit Function"	
not	Reverse Run Prohibited CN1-43 (N-OT) is OFF.	Refer to Chapter 7.1.2 "Setting the Overtravel Limit Function"	
<u>R.02</u> R.03	Alarm Status Displays the alarm number.	Refer to Appendix A 2.1 "Trouble Shooting Problems with Alarm Displays"	

OPERATION IN PARAMETER SETTING MODE

Functions can be selected or adjusted by setting parameters. There are two types of parameters that can be set. One type requires value setting and the other requires function selection. These two types use different setting methods.

- With value setting, a parameter is set to a value within the specified range of the parameter.
- With function selection, functions allocated to each digit of the sevensegment LED panel indicator (five digits) can be selected.

Refer to Appendix C "List of Parameters'.

Changing Parameter Value Settings

Parameter value settings can be used to change parameter data. Check the permitted range of the parameters in *Appendix C "List of Parameters*", before changing the data.

The example below shows how to change parameter Pn507 from 100 to 85.

Example

1. Press the **MODE/SET** key to select the Parameter Setting mode.

2. Press the **Left** or **Right Arrow** keys to select the digit and the **Up Arrow** or **Down Arrow** keys to set the parameter value. (Pn507 is selected in this example.)

3. Press the DATA/SHIFT key for a minimum of one second to display the current data for the parameter selected in step 2.

- 4. Press the Up Arrow or Down Arrow key to change the value as desired to "00085".
- 5. Press the DATA/SHIFT key for a minimum of one second to save the data. The display will flash.

6. Press the DATA/SHIFT key once more for a minimum of one second to display the parameter number again.

This has changed the setting of the parameter Pn507 from 100 to 85.

Repeat steps 2 to 6 to change the setting again.

IMPORTANT

• Press the DATA/SHIFT key for a maximum of one second to shift to a higher (left) digit.

Function Selection Parameters

Function Selection Parameters Types

The following table shows the parameters for selecting servo amplifier functions.

Category	Parameter Number	Name	Default Setting	Important Note
	Pn000	Function Selection Basic Switches	0000	(See 1)
Function Selection	Pn001	Function Selection Application Switches 1	0000	(See 1)
Parameters	Pn002	Function Selection Application Switches 2	0100	(See 1)
	Pn003	Function Selection Application Switches 3	0002	_
Gain-related Parameters	Pn110	Online Autotuning Switches	0010	(See 2)
Position Control related Parameter	Pn200	Position Control Reference Selection Switches	0004	(See 1)
	Pn50A	Input Signal Selections 1	8881	(See 1)
	Pn50B	Input Signal Selections 2	8888	(See 1)
	Pn50C	Input Signal Selections 3	8888	(See 1)
Sequence-related Parameters	Pn50D	Input Signal Selections 4	8888	(See 1)
	Pn50E	Output Signal Selections 1	0000	(See 1)
	Pn50F	Output Signal Selections 2	0000	(See 1)
	Pn510	Output Signal Selections 3	0000	(See 1)

IMPORTANT

- 1. After changing these parameters, turn OFF the main circuit and control power supplies and then turn them ON again to enable the new settings.
- 2. Changing bits Pn10B.1 and Pn110.0 require the same sequence described in note 1 (above).

Display Application	Display	Format
Function selection		Hexadecimal display for each digit
Parameter setting		Decimal display in five digits

Parameter settings are displayed in two patterns as shown below.

Since each digit in the function selection parameters has its own meaning, the value can only be changed for each individual digit. Each digit can only display a value within its own permitted range.

Display Definition for Function Selection Parameters

Each digit of the function selection parameters has a unique meaning.

For example, the rightmost digit of parameter Pn000 is expressed as "Pn000.0".

• Each digit of the function selection parameters is defined as shown below. The parameter displayed below shows how the digits in the display are assigned.

Distribution of Parameter Digits		
Designation	Meaning	
Pn000.0	Indicates the value entered at the 0 digit of parameter Pn000.	
Pn000.1	Indicates the value entered at the 1 digit of parameter Pn000.	
Pn000.2	Indicates the value entered at the 2 digit of parameter Pn000.	
Pn000.3	Indicates the value entered at the 3 digit of parameter Pn000.	

Changing Function Selection Parameters

1 Press the **MODE/SET** key to select the Parameter Setting mode.

- 2. Press the **Up Arrow** or **Down Arrow** key to select the parameter number to be set. (Pn000 is selected in this example.)
- 3. Press the **DATA/SHIFT** key for a minimum of one second to display the current data for the selected parameter.

4. Press the DATA/SHIFT key to select the digit to be set.

5. Press the **Up Arrow** or **Down Arrow** key to select the value defined as a function setting for the selected digit.

Repeat the steps 4 and 5 above for changing the data as required.

6. Press the **DATA/SHIFT** key for a minimum of one second to save the data. The display will flash.

7. Press the **DATA/SHIFT** key once more for a minimum of one second to return to the parameter number display.

This has changed the 1 digit of parameter Pn000 to "1".

9.1.6 **OPERATION IN MONITOR MODE**

The Monitor mode can be used for monitoring the reference values, I/O signal status, and servo amplifier internal status.

The Monitor mode can be set during motor operation.

Using the Monitor Mode

The example below shows how to display 1500; the contents of monitor number Un000 when the servo motor rotates at 1500rpm.

1. Press the **MODE/SET** key to select the Monitor mode.

- 2. Press the **Up Arrow** or **Down Arrow** key to select the monitor number to be displayed.
- 3. Press the **DATA/SHIFT** key for a minimum of one second to display the monitor number selected in step 2 above.

	5	\Box	\Box
--	---	--------	--------

4. Press the **DATA/SHIFT** key once more for a minimum of one second to return to the monitor number display.

This has changed the 1 digit of parameter Pn000 to "1".

This completes the example procedure for displaying 1500; the contents of monitor number Un000.

Contents of Monitor Display

Monitor Number	Monitor Display	Unit	Comments
Un000	Actual motor speed	rpm	_
Un001	Input speed reference	rpm	(See note 3 below)
Un002	Internal torque reference	%	Value for rated torque
Un003	Rotation angle 1	pulses	Number of pulses from the origin
Un004	Rotation angle 2	degree	Angle (electrical angle) from the origin
Un005	Input signal monitor		(See note 1 below)
Un006	Output signal monitor		(See note 1 below)
Un007	Input reference pulse speed	rpm	(See note 4 below)
Un008	Error counter value	reference unit	Positional error (See note 4 below)
Un009	Accumulated load rate	%	Value for the rated torque as 100% Displays effective torque in 10s cycle.
Un00A	Regenerative load rate	%	Value for the processable regenerative power as 100% Displays regenerative power consumption in 10s cycle.
Un00B	Power consumed by DB resistance	%	Value for the processable power when dynamic brake is applied as 100% Displays DB power consumption in 10s cycle.
Un00C	Input reference pulse counter	_	In hexadecimal (See notes 2 and 4 below)
Un00D	Feedback pulse counter		In hexadecimal

NOTE: 1. Refer to Sequence I/O Signal Monitor Display on the next page.

- 2. Refer to "Reference Pulse/Feedback Pulse Counter Monitor Display" on page 203.
- 3. Displayed only in Speed Control mode.
- 4. Displayed only in Position Control mode.
Programmable I/O Signal Monitor Display

The following section describes the monitor display for sequence I/O signals.

Input Signal Monitor Display

LED Number	Input Terminal Name	Default Setting
1	SI0 (CN1-40)	Input 0
2	SI1 (CN1-41)	Input 1
3	SI2 (CN1-42)	Input 2
4	SI3 (CN1-43)	Input 3
5	SI4 (CN1-44)	Input 4
6	SI5 (CN1-45)	Input 5
7	SI6 (CN1-46)	Input 6 (high speed input)
8	(CN1-4)	SEN

Input signals are allocated as shown above and displayed on the panel of the servo amplifier or the digital operator. They are indicated by the ON/OFF status of the vertical parts of the seven-segment displays located in top and bottom rows. (The horizontal segments are not used here). These vertical segments turn ON or OFF relative to the state of the corresponding input signals (ON for "L" level and OFF for "H" level).

Examples

• When /S-ON signal is ON (Servo ON at "L" signal)

Output Signal Monitor Display

LED Number	Output Terminal Name	Default Setting
1	(CN1-31, -32)	ALM
2	SO1 (CN1-25, -26)	Programmable Output 1
3	SO2 (CN1-27, -28)	Programmable Output 2
4	SO3 (CN1-29, -30)	Programmable Output 3
5	(CN1-37)	AL01
6	(CN1-38)	AL02
7	(CN1-39)	AL03

NOTE: Refer to *Chapter 7.4 "Output Circuit Signal Allocation"* for details on output terminals.

Output signals are allocated as shown above and displayed on the panel of the servo amplifier or the digital operator. They are indicated by the ON/OFF status of the vertical parts of seven-segment displays located in top and bottom rows. (The horizontal segments are not used here). These vertical segments turn ON or OFF relative to the state of the corresponding output signals (ON for "L" level and OFF for "H" level).

Example

• When ALM signal operates (alarm at "H")

Reference Pulse/Feedback Pulse Counter Monitor Display

The monitor display of the reference pulse counter and feedback pulse counter is expressed in 32-bit hexadecimal.

The display procedure is as follows:

- 1. Press the **MODE/SET** key to select the Monitor mode.
- 2. Press the **Up Arrow** AND **Down Arrow** keys to select "Un00C" or "Un00D".
- 3. Press the **DATA/SHIFT** key for a minimum of one second to display the data for the monitor number selected in the step above.

4. Press the **Up Arrow** or **Down Arrow** key to alternately display the leftmost 16-bit data and rightmost 16-bit data.

Leftmost 16-bit Data

Rightmost 16-bit Data

- 5. Press both the **Up Arrow** AND **Down Arrow** keys simultaneously to clear the 32-bit counter data.
- 6. Press the **DATA/SHIFT** key once more for at least one second to return to the monitor number display.

9.2

APPLIED OPERATION

This section describes how to apply basic operations, using the digital operator, to run and adjust the motor. Read the description of the basic operations in Chapter 9.1 "Basic Functions" before proceeding to this section.

Parameters for applied operation can be set in the Auxiliary Function mode. The following table shows the parameters in the Auxiliary Function mode.

Parameter Number	Function	Comments
Fn000	Alarm traceback data display	_
Fn001	Rigidity setting during online auto-tuning	(See note).
Fn002	JOG mode operation	
Fn003	Zero-point search mode] —
Fn004	(Reserved parameter)	
Fn005	Parameter settings initialization	
Fn006	Alarm traceback data clear	
Fn007	Writing to EEPROM the inertia ratio data obtained from online auto-tuning	
Fn008		
Fn009	Automatic tuning of analog (speed, torque) reference offset	(Casasta)
Fn00A	Manual adjustment of speed reference offset	(See note).
Fn00B	Fn00B Manual adjustment of torque reference offset	
Fn00C	Manual zero-adjustment of analog monitor output	
Fn00D	Manual gain-adjustment of analog monitor output	
Fn00E	Automatic offset-adjustment of motor current detection signal	
Fn00F	Manual offset-adjustment of motor current detection signal	
Fn010	Password setting (protects from parameter changes)	
Fn011	Motor models display] —
Fn012	Software version display	
Fn013	Change Multi-Turn Limit Setting Value when a Multi-Turn Limit Disagreement Alarm occurs	(See note).
Fn014	Clear of option unit detection results	(See note).

NOTE: These parameters and those indicated as $Pn \square \square \square$ are displayed as shown below if their write protection is set (Fn010). Under these circumstances, these parameters cannot be changed. An "Error" message is flashing while trying to change.

205

9.2.1 OPERATION IN ALARM TRACEBACK MODE

The Alarm Traceback mode can display up to ten alarms that have occurred, thus making it possible to check what kind of alarms have been generated.

Alarm traceback data is not cleared on alarm reset or when the servo amplifier power is turned OFF.

The data can be cleared using the special "clear alarm traceback mode." Refer to *Chapter 9, Page 212 "Clearing Alarm Traceback Data:* for details.

Checking Alarms

Follow the procedure below to determine which alarms have been generated.

1. Press the **MODE/SET** key to select "Displaying alarm traceback data (Fn000)" in the Auxiliary Function mode.

- 2. Press the **DATA/SHIFT** key for a minimum of one second to display the alarm traceback data.
- 3. Press the **Up Arrow** or **Down Arrow** key to scroll the alarm sequence numbers up or down and display information on previous alarms.

The higher the leftmost digit (alarm sequence number), the older the alarm data.

For descriptions of each alarm code, refer to *Appendix A 2.1*, *page A-5*, "*Troubleshooting Problems with Alarm Displays*".

The following are operator-related alarms which are not recorded in the traceback data.

Display	Description				
	Digital operator transmission error 1				
	Digital operator transmission error 2				
	No error detected.				
NOTE: Alarm traceback of	lata is not updated when the same alarm				

occurs repeatedly.

JOG OPERATION

Operation from the operator panel allows the servo amplifier to run the motor. This allows checking the motor's rotation direction and speed setting rapidly during machine setup and testing, saving the time and trouble of connecting to a host controller. In this example it is assumed that power has been connected to the main power and control power terminal blocks *as illustrated on pages 27-32*.

9.2.2

- Forward Run Prohibited (/P-OT) and Reverse Run prohibited (/NOT) signals are not effective during JOG operations using parameter Fn002.

- The motor should NOT be connected to a load.

-The motor should be mounted to a support to prevent movement during test operations.

-Adjust the speed setting to a slow safe speed.

For the motor speed setting procedure, refer to Chapter 9.1.5 "Operation in Parameter Setting Mode" The following steps the JOG function will be used to control the servo motor.

1. Press the MODE/SET key to select Fn002 in the Auxiliary Function mode.

2. Press the **DATA/SHIFT** key for a minimum of one second select the Panel Operator Operation mode. Operation is now possible using the panel operator.

3. Press the **MODE/SET** key to set the servo to ON (with motor power turned ON).

4. Press the **Up Arrow** ▲ or **Down Arrow** ▼ key to operate the motor. The motor keeps operating while the key is pressed.

Motor Forward Rotation Motor Reverse Rotation

- 5. Press the **MODE/SET** key to set the servo to OFF state (with motor power turned OFF). Alternatively, press the **DATA/SHIFT** key for a minimum of one second to set the servo to OFF state.
- 6. Press the **DATA/SHIFT** key for a minimum of one second, and the display will revert to Fn002 in the Auxiliary Function mode.

This ends JOG operation under panel operator control.

The motor speed for operation under digital operator control can be changed with the following parameter:

PARAMETER	SIGNAL	Setting (rpm)	APPLICATION			
Pn304	Jog Speed	Default Setting: 500	Speed Control			

Note: The rotation direction of the servo motor depends on the setting of parameter Pn000.0 "Rotation Direction." The above example shows a case where Pn000.0 is set to "0" as a default setting.

AUTOMATIC ADJUSTMENT OF SPEED AND TORQUE REFERENCE OFFSET

9.2.3

When speed and torque control are used, the motor may rotate slowly even when 0V is specified as the analog reference voltage. This occurs when the host controller or external circuit has a small offset (measured in mV) in the reference voltage.

The Automatic Reference Offset Adjustment mode automatically measures the offset and adjusts the reference voltage. It adjusts both the speed and torque references.

The following diagram illustrates the automatic adjustment of an offset in the reference voltage by the servo amplifier.

After completion of the automatic offset adjustment, the new offset value is stored in the servo amplifier.

The offset value can be checked in the Speed Reference Offset Manual Adjustment mode. Refer to *Chapter 9.2.4, "Manual Adjustment of the Speed and Torque Reference Offset"* for details.

The Automatic Reference Offset Adjustment mode cannot be used to set error pulses to zero for a stopped servo amplifier when a position loop is formed with a host controller. In such cases, use the Manual Reference Offset Adjustment mode. Refer *Chapter 9.2.4, "Manual Adjustment of the Speed and Torque Reference Offset"* for details.

The zero-clamp speed control function is available to force the motor to stop while the zero speed reference is given. Refer to *Chapter 7.5.3, "Using the Zero Clamp Function"*.

• Automatic adjustment of the speed/torque reference offset must be performed in the servo OFF state.

Follow this procedure to automatically adjust the speed/torque reference offset.

1. Input the (intended) 0V reference voltage from the host controller or external circuit.

2. Press the MODE/SET key to select the Auxiliary Function mode.

3. Press the Up Arrow or Down Arrow key to select the parameter Fn009.

- 4. Press the **DATA/SHIFT** key for a minimum of one second, and the display will be as shown below.
- 5. Press the **MODE/SET** key, and the following display will flash for one second. The reference offset will be automatically adjusted.

6. Press the **DATA/SHIFT** key for a minimum of one second to return to the Auxiliary Function mode display.

This completes the automatic speed/torque reference offset adjustment.

MANUAL ADJUSTMENT OF SPEED AND TORQUE REFERENCE OFFSET

Manual speed/torque reference offset adjustment is useful in the following situations:

- If a position loop is formed with a host controller and the error zeroedout when the motor was stopped in servo lock (zero reference)
- To deliberately set the offset to a specific value

This mode can also be used to check the data set in the Automatic Reference Offset Adjustment mode.

In principle, this mode operates in the same way as the Automatic Reference Offset Adjustment mode, except that the offset value is directly input during the adjustment. The offset value can be set in the speed reference or torque reference. The offset setting range and setting units are as follows:

* Values in parentheses are for the SGDM- \Box DA, and SGDM- \Box D (Version 0006 or later).

Follow the procedure below to manually adjust the speed reference offset.

1. Press the **MODE/SET** key to select the Auxiliary Function mode.

2. Press the Up Arrow or Down Arrow key to select the parameter Fn00A.

3. Press the **DATA/SHIFT** key for a minimum of one second, and the display will be as shown below. The manual adjustment mode for the speed reference offset will be entered.

4. Turn ON the Servo ON (/S-ON) signal. The display will be as shown below.

- 5. Press the **DATA/SHIFT** key for less than one second to display the speed reference offset value.
- 6. Press the **Up Arrow** or **Down Arrow** key to adjust the offset value (adjustment of the speed reference offset).
- 7. Press the **DATA/SHIFT** key for less than one second to return to the display shown in step 4 above .
- 8. Press the **DATA/SHIFT** key to return to the Auxiliary Function mode display.

This completes the manual speed reference offset adjustment.

Manual Adjustment of Torque Reference Offset

Follow the procedure below to manually adjust the torque reference offset.

1. Press the **MODE/SET** key to select the Auxiliary Function mode.

2. Press the Up Arrow or Down Arrow key to select the parameter Fn00B.

3. Press the **MODE/SET** key for a minimum of one second, and the display will be as shown below. The manual adjustment mode for the torque reference offset will be entered.

4. Turn ON the Servo ON (/S-ON) signal. The display will be as shown below.

5. Press the **DATA/SHIFT** key for less than one second to display the torque reference offset value.

|--|

- 6. Press the **Up Arrow** or **Down Arrow** key to adjust the offset value (Adjustment of torque reference offset).
- 7. Press the **DATA/SHIFT** key for less than one second, and the display will be as shown in step 4 above.
- 8. Press the **DATA/SHIFT** key to return to the Auxiliary Function mode.

This completes the manual torque reference offset

Clearing Alarm Traceback Data

This procedure clears the alarm history, which stores alarms generated in the servo amplifier. After clearing, each alarm in the alarm history is set to A.- -, which is not an alarm code. Refer to *Chapter 9.2.1 "Operation in Alarm Traceback Mode"* for details.

Follow the procedure below to clear the alarm traceback data.

1. Press the MODE/SET key to select the Auxiliary Function mode.

2. Press the Up Arrow or Down Arrow key to select the parameter Fn006.

3. Press the **DATA/SHIFT** key for a minimum of one second, and the display will be as shown below.

4. Press the **MODE/SET** key to clear the alarm traceback data. The following display will flash for one second, and after the alarm traceback data is cleared, the display will return to show as above in step 3.

5. Press the **DATA/SHIFT** key for a minimum of one second to return to the parameter code display.

This completes the alarm traceback data clearing procedure.

Checking the Motor Model

This procedure clears the alarm history, which stores alarms generated in the servo amplifier. After clearing, each alarm in the alarm history is set to A.- -, which is not an alarm code. Refer to *Chapter 9.2.1 "Operation in Alarm Traceback Mode"* for details.

Follow the procedure below to clear the alarm traceback data.

1. Press the **MODE/SET** key to select the Auxiliary Function mode.

2. Press the Up Arrow or Down Arrow key to select the parameter Fn011.

3. Press the **DATA/SHIFT** key for a minimum of one second, to display the servo motor model and voltage code.

	Voltage	Servomotor Model					
Code	Voltage	Code	Servomotor Model				
00	100V _{AC} or 140V _{DC}	00	SGMAH				
01	200V $_{\rm AC}$ or 280V $_{\rm DC}$	01	SGMPH				
02	400V $_{\rm AC}$ or 560V $_{\rm DC}$	02	SGMSH				
		03	SGMGH- 🛛 A (1500rpm)				
		04	SGMGH- 🛛 B (1000rpm)				
		05	SAGMDH				
		06	SGMUH				

4. Press the **MODE/SET** key to display the servo motor capacity.

Capacity: Displayed valuex10 (W) In this example, the capacity is100W.

5. Press the MODE/SET key, and the encoder type and resolution code will be displayed.

Encoder Type							
Code	Voltage						
00	Incremental Encoder						
01	Absolute Encoder						

Encoder Resolution								
Code	Resolution							
13	13 bits							
16	16 bits							
17	17 bits							
20	Reserved							

6. Press the MODE/SET key to display the servo amplifier's special (Y-specification) code.

This example shows specification "Y10" (indicated in decimal).

7. Press the DATA/SHIFT key to return to the Auxiliary Function mode display.

Pressing the DATA/SHIFT key after the above displays in steps 3 to 5 will also return to the Auxiliary Function mode display.

This completes the motor type checking procedure.

CHECKING THE SOFTWARE VERSION

Set Fn012 to select the Software Version Check mode. This mode is used for motor maintenance.

Follow the procedure below to check the software version.

- 1. Select the parameter Fn012.
- 2. Press the DATA/SHIFT key for a minimum of one second to display the servo amplifier software version.

9.2.5

3. Press the MODE/SET key to display the encoder software version.

4. Press the **DATA/SHIFT** key for a minimum of one second to return to the parameter code display

9.2.6

ORIGIN SEARCH MODE

• Forward run prohibited (/P-OT) and reverse run prohibited (/N-OT) signals are not effective during jog operations using parameter Fn003.

The Origin Search mode is designed to position the origin pulse position of the encoder and to clamp at the position. This mode is used when the motor shaft needs to be aligned to the machine. Execute the origin search without connecting the couplings.

The speed for executing the origin search is 60 rpm.

The following conditions must be met to perform the origin search operation.

- If the Servo-ON input signal (/S-ON) is ON, turn it OFF.
- Release the Servo-ON signal mask when the parameter Pn50A.1 is set to and the servo has been set to be always ON.

Follow the procedure below to execute the origin search.

1. Press the MODE/SET key to select the Auxiliary Function mode.

2. Press the Up Arrow or Down Arrow key to select the parameter Fn003.

3. Press the **DATA/SHIFT** key for a minimum of one second, and the display will be as shown below.

4. Press the **DSPL/SET** key, and the display will change as shown below. Now it is ready for executing the origin search.

5. Hold down **Up Arrow** or **Down Arrow** key to execute the origin search. When the parameter is set to Pn000.0 = 0 (default), pressing the Up Arrow key will rotate the motor in forward direction. Pressing the Down Arrow key will rotate the motor in reverse direction. When the parameter is set to Pn000.0 = 1, the rotation of the motor is reversed.

6. Press the DATA/SHIFT key for a minimum of one second to return to the Auxiliary Function mode display.

This completes the origin search operation.

9.2.7

INITIALIZING PARAMETER SETTINGS

This function is used to reset all parameters to the default settings (standard factory settings).

IMPORTANT

- Initialize the parameter settings with the servo OFF.
- After performing the procedure, cycle the power to reset all the parameters to the default settings.

Follow the procedure below to initialize parameter settings.

1. Press the MODE/SET key to select the Auxiliary Function mode.

2. Press the Up Arrow or Down Arrow key to select parameter Fn005.

3. Press the **DATA/SHIFT** key for a minimum of one second, and the display will be as shown below.

4. Press the **MODE/SET** key, and the display will be as shown below. The parameters will be initialized.

5. Press the **DATA/SHIFT** key for a minimum of one second to return to the Auxiliary Function mode display.

This completes the initialization of parameter settings.

NOTE: Parameters will not be initialized by pressing the DSPL/SET or MODE/SET key with the servo ON. Turn the power OFF and then back ON after initialization.

9.2.8 MANUAL ZERO ADJUSTMENT AND GAIN ADJUSTMENT OF ANALOG MONITOR OUTPUT

Motor speed, torque reference, and position error can be monitored through the analog monitor output. Refer to *Chapter 8.4 "Analog Monitor" for more details*.

Use the manual zero adjustment function to compensate for the output voltage drift or the zero point drift caused by noise entering the monitor system. The gain adjustment function can be changed to match the sensitivity of the measuring system.

Zero	Setting	Range:	±2'	V	\rightarrow	17mV/LSB
Gain	Setting	Range:	50	to	150%→	0.4%/LSB

NOTE: The output voltage of the analog monitor is $\pm 8V$. The output voltage polarity will be reversed if $\pm 8V$ is exceeded.

Manual Zero Adjustment of Analog Monitor Output

Follow the procedure below to execute the manual zero adjustment of analog monitor output.

1. Press the MODE/SET key to select the Auxiliary Function mode.

2. Press the Up Arrow or Down Arrow key to select the parameter Fn00C.

3. Press the **DATA/SHIFT** key for a minimum of one second, and the display will be as shown below.

4. Press the **MODE/SET** key. Each time the **MODE/SET** key is pressed, the monitor output will toggle between the displays for the two channels shown below.

5. Press the **DATA/SHIFT** key for less than one second, and the analog monitor gain parameter will be displayed. Pressing the **DATA/SHIFT** key again for less than one second will return to the display shown in steps 3 or 4 above.

6. Press the **Up Arrow** or **Down Arrow** key to perform zero adjustment of the analog monitor output.

7. When zero adjustment has been completed for the two channels, press the **DATA/SHIFT** key for a minimum of one second to return to the Auxiliary Function mode display.

This completes the manual zero adjustment of the analog monitor output.

Manual Gain Adjustment of Analog Monitor Output

Follow the procedure below to execute the manual gain adjustment of analog monitor output.

1. Press the **MODE/SET** key to select the Auxiliary Function mode.

2. Press the Up Arrow or Down Arrow key to select parameter Fn00D.

3. Press the **DATA/SHIFT** key for at least one second, and the display will be as shown below.

4. Press the **MODE/SET** key. Each time the **MODE/SET** key is pressed, the monitor output will toggle between the displays for the two channels shown below.

5. Press the **DATA/SHIFT** key for less than one second, and the analog monitor gain parameter will be displayed. Pressing the **DATA/SHIFT** key again for less than one second will return to the display shown in steps 3 or 4 above.

6. Press the **Up Arrow** or **Down Arrow** key to adjust the gain for the analog monitor output.

7. When gain adjustment has been completed for the two channels, press the **DATA/SHIFT** key for a minimum of one second to return to the Auxiliary Function mode display.

This completes the manual gain adjustment of the analog monitor output.

9.2.9 Adjusting the Motor Current Detection Offset

Motor current detection offset adjustment is performed at Yaskawa before shipping. Normally, the user does not need to perform this adjustment. Make this adjustment only if highly accurate adjustment is required to reduce torque ripple caused by current offset

• If this function, particularly manual adjustment, is executed carelessly, it may degrade the performance of the servo drive.

The following sections describe automatic and manual adjustment of the current detection offset.

Automatic Adjustment of the Motor Current Detection Offset

• Automatic adjustment is possible only with power supply to the main circuits ON and with the servo OFF.

Use the following procedure to perform automatic adjustment of the current detection offset.

1. Press the **MODE/SET** key to select the Auxiliary Function mode.

2. Press the Up Arrow or Down Arrow key to select the parameter Fn00E.

3. Press the **DATA/SHIFT** key for a minimum of one second, and the display will be as shown below.

4. Press the **MODE/SET** key. The display will change as shown below, and the offset will be automatically adjusted.

5. Press the **DATA/SHIFT** key for a minimum of one second to return to the Auxiliary Function mode display.

This completes the automatic adjustment of the motor current detection offset.

Manually Adjusting the Motor Current Detection Offset

Follow the procedure below to manually adjust the current detection offset.

IMPORTANT

• When making manual adjustments, run the motor at a speed of approximately 100rpm, and adjust the Motor Current Detection Offset until the torque ripple, observed with the analog monitor, is minimized. (Refer to Chapter 8, section 8.4 for more details on "Analog Monitor".)

Adjust the U-phase and V-phase offsets alternately several times until these offsets are well balanced.

1. Press the **MODE/SET** key to select the Auxiliary Function mode.

2. Press the Up Arrow or Down Arrow key to select the parameter Fn00F.

3. Press the **DATA/SHIFT** key for a minimum of one second, and the display will be as shown below.

4. Press the **MODE/SET** key to switch between U-phase (Cu1_0) and V-phase (Cu2_0) current detection offset adjustment mode.

5. Press the **DATA/SHIFT** key for less than one second to display the current detection data. Press the **DATA/SHIFT** key again for less than one second, and the display will return to show as in step 3 or 4 above.

6. Press the **Up Arrow** or **Down Arro**w key to adjust the offset. Carefully adjust the offset while monitoring the torque reference monitor signal.

7. When the current offset adjustment has been completed for the U-phase (Cu1_0) and V-phase (Cu2_0), press the **DATA/SHIFT** key to return to the Auxiliary Function mode display.

This completes the manual adjustment of the motor current detection offset.

9.2.10 WRITE PROTECTION SETTING

The write protection setting is used to prevent careless changes of parameters. Pn $\square \square \square$ parameters and some of the Fn $\square \square \square$ parameters become write protected by setting the parameter Fn010.

Password setting values are as follows:

- "0000": Write enabled (releases write protected mode.)
- "0001": Write prohibited (parameters become write protected at the next power ON.)

Follow the procedure below to set the write protection feature.

- 1. Press the **MODE/SET** key to select the Auxiliary Function mode.
- 2. Press the Up Arrow or Down Arrow key to select the parameter Fn010.

3. Press the **DATA/SHIFT** key for a minimum of one second, and the display will be as shown below.

4. Input the value (0001) and press the **MODE/SET** key. The display will change as shown below and the write protection will be established.

5. Press the **DATA/SHIFT** key for a minimum of one second to return to the Auxiliary Function mode display.

This completes the procedure for setting the write protection. The new password setting will be valid after the next power OFF/ON cycle.

9.2.11 CLEARING THE OPTION UNIT DETECTION ALARM

Alarm A.E7 (option unit detection failure) occurs the first time that the XtraDrive servo amplifier is turned ON after disconnecting an option board.

IMPORTANT

• Initialize the parameter settings with the servo OFF.

• After performing the procedure, cycle the power to reset all parameters to the default settings.

• Because the parameter has been set for the XtraDrive connected to an option board, be sure to adjust the setting or initialize the parameter value (Fn005 of the Auxiliary Function mode) to meet the current system needs.

Use the following procedure to initialize parameter settings.

1. Press the **MODE/SET** key to select the Auxiliary Function mode.

2. Select the parameter Fn014.

Press the **Left Arrow** or **Right Arrow** key to select the digit. Press the **Up Arrow** or **Down Arrow** key to change the value.

3. Press the **DATA/SHIFT** key for a minimum of one second, and the display will be as shown below.

4. Press the **MODE/SET** key, and the display will be as shown below. The parameters will be initialized.

5. Press the **DATA/SHIFT** key for a minimum of one second to return to the Auxiliary Function mode display.

[F _ [] 4]

This completes the initialization of parameter settings.

226 XtraDrive Users Guide

Page is intentionally left blank - for you to fill with your own notes.

RATINGS, SPECIFICATIONS AND DIMENSIONAL DRAWINGS

10.1 RATINGS AND SPECIFICATIONS

The following table shows ratings and specifications for the XtraDrive servo amplifier to use in selecting the appropriate servo amplifier.

XTRADRIVE MODEL XD-		P3	P5	01	02	04	05	08	10	15	20	30	50	
	0V	SGMAH-□B	A3	A5	01	02						_	_	—
	10(SGMPH-□B			01	02								
rvo motor		SGMAH-□A	A3	A5	01	02	04		08					
	Λ	SGMPH-□A			01	02	04		08		15			
	200	SGMGH-□A□A (1500rpm)						05		09	13	20	30	
ıble S		SGMSH-□A								10	15	20	30	
pplica		SGMAH-□D						03				_	22	
A	7	SGMPH-□D						02 04		08	15			
	400	SGMGH-□D						05		09	13	20	30	44
		SGMSH-□D						_		10	15	20	30	50
		SGMUH-□D								10	15		30	
	Ma Apj mot	ximum plicable Servo tor Capacity [kW]	0.03	0.05	0. 1	0.2	0.4	0.45	0.75	1.0	1.5	2.0	3.0	5.0
	0V	Continuous Output Current [A _{rms}]	0.66	0.95	2.4	3.0								
ttions	10	Maximum Output Current [A _{rms}]	2.0	2.9	7.2	9.0						_	_	_
c Specifica	0V	Continuous Output Current [A _{rms}]	0.44	0.64	0.91	2.1	2.8	3.8	5.7	7.6	11.6	18.5	24.8	_
Basic	20	Maximum Output Current [A _{rms}]	1.3	2.0	2. 8	6.5	8.5	11.0	13.9	17	28	42	56	
	0V	Continuous Output Current [A _{rms}]						1.9		3.5	5.4	8.4	11.9	16.5
	40	Maximum Output Current [A _{rms}]		_				5.5		8.5	14	20	28	40.5

The table's input current rates are at the lower range of the voltage specifications.

continued

2	X tra D	RIVE MO	del XD-	P3-01	02	04	05	08	10	15	20	30	50	
			100V	Single-p	Single-phase 100 to $115V_{AC}$ +10 to -15%, 50/60Hz *									
	pply*	Main Circuit	200V	Single/T	Single/Three-phase 200 to 230V _{AC} +10 to -15%, 50/60Hz *									
	er Su		400V	Three-pl	nase. 380	to 480V	$t_{AC} + 10 t$	o -15%,	50/60Hz					
	: Pow		100V	Single-p	Single-phase 100 to 115V _{AC} +10 to -15%, 50/60Hz *									
	Input	Control Circuit	200V	Single-p	Single-phase 200 to 230.5V _{AC} +10 to -15%, 50/60Hz									
			400V	$24V_{DC} \pm$	[‡] V _{DC} ±15%, 0.7A									
	Control Method			Single of	r three-pl	hase full-	wave re	ectificati	on IGBT-F	WM (s	sine wa	ve driven)	
suo	Feedback			Serial encoder: 13- (incremental only), 16-, or 17-bit (incremental/absolute).										
cificatic	ns	Ambient/Storage Temperature **		0 to $+55^{\circ}$ C/-20 to $+85^{\circ}$ C (When enclosed, internal temperatures must not exceed this range.)										
sic Spec	onditio	Ambient/Storage Humidity		90% rela	90% relative humidity or less (with no condensation)									
Ba	C	Vibration/Shock Resistance		4.9 m/s ²	4.9 m/s ² /19.6 m/s ²									
		Configur	ation	Base mounted (Rack mounted optional).										
	Xtı	aDrive M	odel XD-	P3-01	02	04	05	08	10	15	20	30	50	
		For 100	v		1.1				_	_				
	1ass]	101100	•	0.8	(2.43)		1							
	JX. N g (lb)	For 200	v	(1.76)	0.8	1.1		1.	.7 (3.75)					
	ppr [k§				(1.76)	(2.43)					2.8	3.8		
	A	For 400	V	_		_	1.7	_	1.7	(6	5.17)	(8.38)	5.5	
		1014001					(3.75	0	(3.75)				(12.1)	

* Supply voltage must not exceed 230V +10% (235V). A step-down transformer is required if the voltage exceeds these values.

** Use the servo amplifier within the ambient temperature range. When enclosed, internal temperatures must not exceed the specified range.

continued

ance		Speed Cor	itrol Range	1:5000 (The lowest speed of the speed control range is the point just before the motor stops under full-load condition.)					
		*	Load Regulation	0 to 100% load: 0.01% maximum (at rated speed)					
	JCe	peed lation	Voltage Regulation	Rated Voltage $\pm 10\%$: 0% (at rated speed)					
	formai	S _I Regu	Temperature Regulation	25 ± 25 °C: ±0.1% max. (at rated speed)					
	Per	Frequency	Characteristics	400Hz (at J L = J M)					
		Torque Co (Repeatab	ntrol Tolerance ility)	±2%					
lodes		d)	Reference Voltage	\pm 6V _{DC} (Variable setting range: \pm 2 to \pm 10V _{DC}) at rated torque (positive torque reference with positive reference), input voltage: \pm 12V (maximum).					
ntrol N		speed ference Input	Input Impedance	About 14k Ω					
due Co		Ref	Circuit Time Constant	_					
ind Tor	Signals	r e e	Reference Voltage	$\pm 3V_{DC}$ (Variable setting range: ± 1 to $\pm 10V_{DC}$) at rated torque (positive torque reference with positive reference), input voltage: $\pm 12V$ (maximum)					
ed a	out 9	arqu eren nput	Input Impedance	About 14k Ω					
Spe		Tc Refe	Circuit Time Constant	About 47 µs					
		itact eed rence	Rotation Direction Selection	With P control signal					
		Cor Sp Refe	Speed Selection	With forward/reverse current limit signal (speed 1 to 3 selection), servomotor stops or another control method is used when both are OFF.					
	Sequence	Sigr can	nal allocation be modified	Servo ON, P control (or Control Mode switching, forward/reverse motor rotation by internal speed setting, zero clamping, reference pulse prohibited), forward run prohibited (P-OT), reverse run prohibited (N-OT), alarm reset, forward current limit, and reverse current limit (or internal speed selection)					
ode C		e	Туре	Sign + pulse train, 90° phase difference 2-phase pulse (A phase + B phase), or CCW + CW pulse train					
Ă	nals	Pulse	Form	Line driver (+5V level), open collector (+5V or +12V level)					
	ut Sig	ž	Frequency	500/200kpps maximum (line driver/open collector).					
	lnp	Control Sig	gnal	Clear Signal (input pulse form identical to reference pulse)					
		Built-in Op Supply***	en-Collector Power	+12V (1k Ω built-in resistor)					
NCT Programming mode - control of the servo system utilizes the on-board indexer, and full programmability of the XtraDrive. Please refer to the XtraWare manual for details.									

Speed regulation is defined as follows:

*

The motor speed may change due to voltage variations or amplifier drift and changes in processing resistance due to temperature variation. The ratio of speed changes to the rated speed represents speed regulation due to voltage and temperature variations.

*** The built-in open collector power supply is not electrically isolated from the control circuit in the servo amplifier.

continued

put	Position	Form	A -, B -, C - phase line driver S - phase line driver (only with an absolute encoder)				
al Out		Frequency Dividing Ratio	Any				
Digita	ce	Fixed Output	Servo alarm, 3-bit alarm codes.				
	Sequen	Signal allocation can be modified	Positioning completed (speed coincidence), during servomotor rotation, servo ready, during current limiting, during speed limiting, brake released, warning, selecting three of the NEAR signals.				
	Dyn	amic Brake	Operated at main power OFF, servo alarm, servo OFF, or overtravel.				
	Reg	eneration	External regenerative resistor. *				
	Ove	rtravel Stop	Dynamic brake stops at P-OT or N-OT, deceleration to a stop, or free run to a stop.				
	Elec	tronic Gear	$0.01 \le A/B \le 100$				
ns	Prot	ection	Overcurrent, overvoltage, low voltage, overload, regeneration error, main circuit voltage error, heat sink overheated, no power supply, overflow, overspeed, encoder error, overrun, CPU error, parameter error, etc.				
ctio	LED	Display	Charge, Power, five 7-segment LEDs (built-in digital operator functions)				
ernal Fun	CN5 Mor	Analog itoring	Analog monitor connector built in for monitoring speed, torque and other reference signals.				
Inte		Connected Devices	Digital operator (hand-held model), RS-422A port such as for a personal computer (RS-232C ports under certain conditions)				
	ons	1:N Communications	Up to N = 14 for RS-422A ports				
	unicati	Axis Address Setting	Set with parameters.				
	Comm	Functions	Status display, parameter setting, monitor display, alarm trace-back display, JOG and auto-tuning operations, speed, and torque reference signal				
		Others	Reverse rotation connection, origin search, automatic servomotor ID, DC reactor connection terminal for high power supply frequency control*				

*Available as built-in on modules 05, 08, 10, 15, 20, 30, 50. See Sections 7.7 and E1.

1	7	n	
		L	- 4
-		~	_

SINGLE-PHASE 100V XTRADRIVE AND MOTOR COMBINATIONS

	XTRA	Drive Model XD-	P3-L*	P5-L*	01-L*	02-L*		
	lble otor	Model SGMAH-	A3B	A5B 01B		02B		
ole)	plice vo m	Capacity (KW)	0.03	0.05	0.1	0.2		
ries npatil	Ar Ser	Motor Speed (Rpm)		Rated 3000/m	naximum 5000			
SGMPH Series SGMAH Series (Yaskawa or compatible) (Yaskawa or compatible) (Yaskawa or compatible) (Yaskawa or compatible)		Applicable Encoder	YASKAWA set DIFF	YASKAWA serial or incremental A quad B or absolute encod DIFFERENT incremental A quad B encoders				
	Conti	nuous Output CurrentA _{rms}	0.66	0.95	2.4	3.0		
	Max	imum Output Current A _{rms}	2.0	2.9	9.0			
	A	llowable Regenerative Energy* (Joules)	e 7.8 15.7					
	tble otor	Model SGMPH-	-	-	01B	02B		
ole)	pplica vo m	Capacity (KW)	-	- 0.1 0.1				
ries 1patil	Ar	Motor Speed (Rpm)	Rated 3000/maximum 5000					
IPH Se		Applicable Encoder	YASKAWA serial or incremental A quad B or absolute encoder. DIFFERENT incremental A quad B encoders					
SGN skawa	Conti	nuous Output Current A _{rms}	-	-	2.2	2.7		
SGMPH Series SGMAH Series (Yaskawa or compatible) (Yaskawa or compatible)	Max	imum Output Current A _{rms}	-	-	7.1	8.4		
	A	llowable Regenerative Energy* (Joules)		- 15.7				

* Allowable regenerative energy is the value with an AC input power supply voltage of 100 Vrms. The allowable regenerative energy may vary with power supply fluctuations.

AND DIMENSIONAL DRAWINGS

10.3

SINGLE-PHASE 200V XTRADRIVE AND MOTOR COMBINATIONS

XTRAI	Drive N	Model XD-	P3-M*	P5-M*	01-M*	02-M*	04-M*	08-M*	15-M*		
SGMPH Series (Yaskawa or compatible) (Yaskawa or compatible) (Yaskawa or compatible)	e tor	Model SGMAH-	A3A	A5A	01A	02A	04A	08A	-		
	licabl o mo	Capacity (KW)	0.03	0.05	0.1	0.2	0.4	0.75	-		
eries mpati	App Serv	Motor Speed (Rpm)			Rated 3	8000/maxir	* 04-M* 08 04A 0.4 0.4 0.4 ximum 5000 A quad B or abs A quad B or abs al A quad B encode 2.8 8.5 8.5 al A quad B encode 04A 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 2.8 and B or abs al A quad B or abs and B or abs al A quad B or abs and B or abs al A quad B or abs and B or abs al A quad B or abs and B or abs)			
[AH S6 t or coi	Appli	cable Encoder	YAS	KAWA ser DIFFI	ial or incr ERENT in	emental A cremental	quad B or A quad B	absolute e encoders	ncoder.		
SGMPH Series SGMAH Series (Yaskawa or compatible) (Yaskawa or compatible) IN D IN D	Conti	Continuous Output Current A _{rms}		0.64	0.91	2.1	2.8	4.4	-		
	Maxir	num Output Current A _{rms}	1.3	2.0	2.8	6.5	8.5	13.4	-		
	Allow Energ	able Regenerative y* (Joules)	18.5			37.1			-		
SGMPH Series SGMAH Series (Yaskawa or compatible) (Yaskawa or compatible)	etor	Model SGMPH-	-	-	01A	02A	04A	08A	15A		
	licabl o mo	Capacity (KW)	-	-	0.1	0.2	0.4	0.75	1.5		
sries npati	App Serv	Motor Speed (Rpm)			Rated 3	8000/maxir	num 5000	M* 08-M* 15-1 IA 08A			
IPH Se or cor	Appli	cable Encoder	YASKAWA serial or incremental A quad B or absolute encoder. DIFFERENT incremental A quad B encoders								
SGM kawa	Conti	nuous Output Current A _{rms}	-	-	0.89	2.0	04-M* 0 04A 0.4 0.4 0.4 num 5000 1 quad B or attack 1 4 quad B en 2.8 8.5 0 04A 0.4 04A 0.4 1000 1	4.1 7.5			
(Yas	Maxir	num Output Current A _{rms}	-	-	2.8	6.0	8.0	13.9	23.0		
	Allow Energ	able Regenerative y* (Joules)		-	37.1				-		

* Allowable regenerative energy is the value with an AC input power supply voltage of 200 Vrms. The allowable regenerative energy may vary with power supply fluctuations.

```
10.4
```

THREE-PHASE 200V XTRADRIVE AND MOTOR COMBINATIONS

	XtraI	DRIVE MODEL XD-	10-**	20-**	30-**			
	ble otor	Model SGMGH-	09A□A	20A□A	30A□A			
	pplica vo m	Capacity (KW)	0.85	1.3	1.8			
	Ap Ser	Motor Speed (Rpm)	Ra	ted 1500/maximum 30	000			
		Applicable Encoder	YASKAWA serial or incremental A quad B or absolute encoder. DIFFERENT incremental A quad B encoders					
	Conti	nuous Output Current A _{rms}	7.1	16.7	23.8			
s (tible)	Maxi	mum Output Current A _{rms}	17	42	56			
H Serie · compa	A Fi	llowable Regenerative requency* (times/min)	13	12	8			
BMG wa or	ble otor	Model SGMGH-	09A□B	20A□B	30A□B			
SC (aska	pplica vo m	Capacity (KW)	0.9	2.0	3.0			
SGMGH Series (Yaskawa or compatib	Ar Ser	Motor Speed (Rpm)	Rated 1000/maximum 2000					
		Applicable Encoder	YASKAWA serial or incremental A quad B or absolute encoder. DIFFERENT incremental A quad B encoders					
	Conti	nuous Output Current A _{rms}	7.6	18.5	24.8			
	Maxi	mum Output Current A _{rms}	16.6	42	56			
	A Fi	llowable Regenerative requency* (times/min)	22	20	13			

* Allowable regenerative frequency is the allowable frequency in the motor while accelerating and decelerating through a $0 \rightarrow$ maximum motor speed $\rightarrow 0$ (r/mim) cycle.

10.5

THREE-PHASE 400V XTRADRIVE AND MOTOR COMBINATIONS

XTRADRIVE MODEL XD-			05-**		10-**	15-**	20-**	30-**	50-T*	
	ble otor	Model SGMAH-	03	3D	07D					
(e)	plica vo mo	Capacity (KW)	0.3		0.65					
ies patibl	Ap Ser	Motor Speed (Rpm)			Rated	3000/max	imum 500	** 30-** 50-1 .		
MAH Ser a or com	ŀ	Applicable Encoder	YASK	AWA se DIFF	rial or inc ERENT in	remental A	A quad B c l A quad B	or absolute encoders	encoder.	
SGN	Contin	uous Output Current A _{rms}	1	.3	2.2					
(Ya	Maxin	num Output Current A _{rms}	5	.5	8.5		_			
	All Fre	lowable Regenerative equency* (times/min)	4	2	15	_	_			
ies patible)	ble otor	Model SGMPH-	02D	04D	10D	15D				
	pplica vo m	Capacity (KW)	0.2	0.4	1.0		_			
	Ar Ser	Motor Speed (Rpm)	Rated 3000/maximum 5000							
H Ser r com	A	Applicable Encoder	YASKAWA serial or incremental A quad B or absolute encoder.							
SGMPH Series (Yaskawa or compat			DIFFERENT incremental A quad B encoders							
	Continuous Output Current A _{rms}		1.4	1.4	2.6	4.5				
S	Maxin	num Output Current A _{rms}	4.6	4.4	7.8	13.7				
	All Fre	lowable Regenerative equency* (times/min)	38	35	32	16		_		
le) SGMPF (Yaskawa or	ble otor	Model SGMGH-	C)5D	09 D	13D	20D	30D	44D	
ible)	plica vo m	Capacity (kW)	C	0.45	0.85	1.3	1.8	2.9	4.4	
ies mpat	Ar Ser	Motor Speed (rpm)			Rated	1500/max	imum 300	0		
H Ser or co		Applicable Encoder	YASK	XAWA se	rial or inc	remental A	A quad B c	r absolute	encoder.	
MG] cawa			DIFFERENT incremental A quad B encoders							
SG (Yasł	Contin	uous Output Current A _{rms}		1.9	3.5	5.4	8.4	11.9	16.5	
ľ	Maxin	num Output Current A		5.5	8.5	14	20	28	40.5	
	All Fre	lowable Regenerative equency* (times/min)		42	15	10	12	8	11	

* Allowable regenerative frequency is the allowable frequency in the motor while accelerating and decelerating through a $0 \rightarrow$ maximum motor speed $\rightarrow 0(r/mim)$ cycle.

10.5

THREE-PHASE 400V ... (CONTINUED)

	XtraI	DRIVE MODEL XD-	05-**	10-**	15-**	20-**	30-**	50	_**		
le)	ble otor	Model SGMSH-		10D	15D	30D	30D	40D	50D		
le)	plica vo m	Capacity (KW)	_	1.0	1.5	3.0	3.0	4.0	5.0		
SGMUH SeriesSGMSH Series(Yaskawa or compatible)(Yaskawa or compatible)	Aŗ Ser	Motor Speed (Rpm)	Rated 3000/maximum 5000								
SH Ser or com		Applicable Encoder	YASKAWA serial or incremental A quad B or absolute encoder. DIFFERENT incremental A quad B encoders								
SGMUH Series SGMSH Series (Yaskawa or compatible) (Yaskawa or compatible)	Continuous Output Current A _{rms}		—	2.8	4.7	6.2	8.9	12.5	13.8		
	Maximum Output Current A _{rms}		—	8.5	14	19.5	28	38	42		
	Al Fr	llowable Regenerative equency* (times/min)	—	47	31	48	20	29	22		
	lble otor	Model SGMUH-	—	10D	15D	—	30D	4()D		
le)	pplica vo m	Capacity (KW)	—	1.0	1.5	—	3.0	4	.0		
ies patibl	Aŗ Ser	Motor Speed (Rpm)	Rated 6000/maximum 6000								
UH Ser		Applicable Encoder	YASKAWA serial or incremental A quad B or absolute encoder. DIFFERENT incremental A quad B encoders								
SGMI askawa	Con	tinuous Output Current A _{rms}		2.7	4.1		8.1	9	.6		
SGMUH Series SGMSH Series (Yaskawa or compatible) (Yaskawa or compatible)	Maxi	mum Output Current A _{rms}	—	8.5	14		28	38	3.5		
	Al Fr	llowable Regenerative equency* (times/min)		27	19		13	1	19		

* Allowable regenerative frequency is the allowable frequency in the motor while accelerating and decelerating through a $0 \rightarrow \text{maximum motor speed} \rightarrow 0(r/\text{mim})$ cycle.

Note: Refer to *Chapter 7.7 "Selecting a Regenerative Resistor"* for more details on allowable regenerative energy and frequency.
```
10.6
```

BASE-MOUNTED DIMENSIONAL DRAWINGS

10.6.1 XD-P3 to -01 (Single-phase 100V, 30 to 100W)

10.6.5 XD-20, -30 (Three-phase 200V, 400V, 2.0 and 3.0kW)

10.6.6 XD-50 (Three-phase 400V, 5.0kW)

10.7

RACK-MOUNTED DIMENSIONAL DRAWINGS

10.7.2 XD-02 (Single-phase 100V, 200W XD-04 (Single-phase 200V, 400W)

MD-04 (Single-phase 200)

10.7.3 XD-08 (Single-phase 200V, 0.75kW) XD-10 (Three-phase 200V, 1.0kW)

Units: mm(in)

MOUNTING HOLE DIAGRAM

Units: mm(in)

Units: mm(in)

Inspection, Maintenance, and Troubleshooting

A2 XtraDrive Users Guide

Page is intentionally left blank - for you to fill with your own notes.

This Appendix describes the basic inspection and maintenance to be carried out by the user. In addition, troubleshooting procedures are described for problems, which generate an alarm display, and for problems, which result in no alarm display.

A 1 XTRADRIVE INSPECTION AND MAINTENANCE

This section describes the basic inspections and maintenance of servo motors and servo amplifiers and the procedures for replacing the battery for absolute encoders.

A 1.1 SERVO MOTOR INSPECTION

For inspection and maintenance of servo motors, follow the simple, daily inspection procedures in the following table.

The AC servo motors are brushless. Simple, daily inspection is sufficient under most conditions. The inspection and maintenance frequencies in the table are only guidelines. Increase or decrease the frequency to suit the operating conditions and environment.

IMPORTANT

• **During inspection and maintenance, do not disassemble the servo motor.** If disassembly of the servo motor is required, contact Yaskawa.

ACTION OR PROBLEM	FREQUENCY	Procedure	Comments
Vibration and Noise	Daily	Daily Touch and listen.	
Exterior Dirt	According to degree of contamination	Clean with cloth or compressed air.	_
Insulation Resistance Measurement	At least every year	Disconnect servo amplifier and test insulation resistance at 500V. Must exceed 10MΩ*	Contact Yaskawa if the insulation resistance is below10MΩ
Oil Seal Replacement	At least every 5000 hours	Remove servo motor from machine and replace oil seal.	Applies only to motors with oil seals.
Servo motor Overhaul	At least every 20000 hours or 5 years	Contact YET	The user should not disassemble and clean the servo motor.

*Measure across the servo motor FG and the U-phase, V-phase, or W-phase power line.

A 1.2 Servo Amplifier Inspection

For inspection and maintenance of the servo amplifier, follow the inspection procedures in the table below. Perform inspection and maintenance at least once a year. Other routine inspections are not required.

ACTION OR PROBLEM	FREQUENCY	PROCEDURE	COMMENTS
Clean interior and circuit boards	At least every year	Check for dust, dirt, and oil on the surfaces.	Clean with compressed air.
Loose screws	At least every year	Check for loose terminal block and connector screws.	Tighten any loose screws.
Defective parts in unit or on circuit boards	At least every year	Check for discoloration, damage or discontinuities due to heating.	Contact YET

Part Replacement Schedule

The following parts are subject to mechanical wear or deterioration over time. To avoid failure, replace these parts at the frequency indicated.

The parameters of any servo amplifiers overhauled by YET are reset to the default (standard factory) settings before shipping. Be sure to confirm that the parameters are set to the application's requirements before starting operation.

Part	Standard Lifespan	Replacement Method
Cooling fan	4 to 5 years	Replace with new part.
Smoothing capacitor	7 to 8 years	Test. Replace with a new part, if necessary.
Relays		Test. Replace if necessary.
Fuse	10 years	Replace with new part.
Aluminum electrolytic capacitor on circuit board	5 years	Test. Replace with new circuit board, if necessary.

Operating Conditions:

Ambient Temperature:	Annual average of 30°C.
Load Factor:	80%, maximum.
Operation Rate:	20 hours/day, maximum.

A 1.3 REPLACING THE BATTERY FOR THE ABSOLUTE ENCODER

If the voltage of the battery for an absolute encoder drops to about 2.7V or less, an Absolute Encoder Battery Alarm (A. 83*) will occur in the servo amplifier. This alarm occurs when the servo amplifier receives a signal from the absolute encoder when the power to the servo amplifier is turned ON. Therefore, the servo amplifier will not give an alarm when the battery voltage drops below the minimum voltage level while the power is being supplied to the servo amplifier.

Refer to *Chapter 7.8 "Absolute Encoder Battery*" for the battery type recommended for absolute encoders.

Replace the battery using the following procedure if the battery voltage drops below the minimum required battery voltage.

Battery Replacement Procedure

- 1. Replace the battery while the control power to the servo amplifier is ON.
- 2. After replacement, turn OFF the power of the servo amplifier in order to clear the Absolute Encoder Battery Alarm (A. 83).
- 3. Turn ON the power of the servo amplifier again and confirm that it operates properly.
- **NOTE:** The absolute encoder data will be lost when the control power to the servo amplifier is turned OFF and the encoder cable is disconnected from the battery. If the data is lost, refer to *Chapter 7.8.3 "Absolute Encoder Setup"* and follow the procedure to initialize the absolute encoder.
- * Alarm A.83 is described in greater detail in Appendix A, page A-18.

A 2

TROUBLE SHOOTING

This section describes causes and remedies for problems, which generate an alarm display, and for problems, which result in no alarm display.

A 2.1 TROUBLE SHOOTING PROBLEMS WITH ALARM DISPLAYS

Problems that occur in the servo drives are displayed on the panel operator as "A. \Box \Box " or "CPF \Box \Box ". Refer to the following sections to identify the cause of an alarm and the action to be taken.

Contact YET if the problem has not been solved after following the described procedures.

NOTE: "A.- -: Normal Operation", is not an alarm.

A. 00: Multi-Turn Data Error

Display and Outputs

Alarm Output				
AL01	Alarm Output			
OFF	OFF	OFF	OFF	

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

Status and Remedy for Alarm

	CAUSE	Remedy
А	Absolute encoder power not supplied from Servopack.	Use the Servopack power supply for the absolute encoder
В	Incorrect absolute encoder wiring (PA, PB, RESET, SEN signal (for speed control), etc.)	Check and correct the absolute encoder wiring
С	Absolute encoder malfunctioned	 For speed control (Cn-01 Bit 1=0), turn SEN signal OFF and back On. (See Note.) For speed control (Cn 01 Bit 1=1) or position control.
		turn Servopack power OFF and back ON.
D	Incorrect user constant setting. Incremental encoder used with Cn-01 Bit E set to 1.	Set Cn-01 Bit E to 0.
Е	Absolute encoder defective	Replace servo motor
F	Circuit board (1PWB) defective	Replace Servopack

NOTE: 1. A.00 is reset when the power is turned OFF and back ON. It is not reset by the normal alarm reset.2. Resetting SEN Signal. When resetting the SEN signal (i.e., turning it OFF and then back ON) for any reason, keep the SEN signal at the high level for more than 1.3 s before turning it OFF.

SEN signal	OFF	ON = High Level 1.3 s min.	OFF	ON
------------	-----	-------------------------------	-----	----

A. 02: Parameter Breakdown

Display and Outputs

ALARM OUTPUTS					
AL	ARM CODE OUTPUT				
ALO1	ALO2	ALO3	ALM OUTPUT		
OFF	OFF	OFF	OFF		

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

Status and Remedy for Alarm

At power ON ____ A, B

	CAUSE OF THE PROBLEM	Solution
А	Power turned OFF during parameter writes. Alarm occurred at next power ON.	 Initialize parameters using Fn005 then reenter settings. Replace the servo amplifier.
В	Circuit board (1PWB) defective.	Replace the servo amplifier.

A. 03: Main Circuit Detection

Display and Outputs	ALARM OUTPUTS			
	AL	ALARM CODE OUTPUT		
	ALO1	ALO2	ALO3	ALM OUTPUT
	OFF	OFF	OFF	OFF

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

Status and Remedy for Alarm

At power ON - A

CAUSE OF THE PROBLEM		Solution	
А	Circuit board (1PWB or 2PWB) defective.	Replace servo amplifier.	

A. 04: Parameter Setting Error

Display and Outputs	ALARM OUTPUTS			
	AL	ARM CODE OUTPUT		
	ALO1	ALO2	ALO3	ALM OUTPUT
	OFF	OFF	OFF	OFF

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

Status and Remedy for Alarm

At power ON _ A, B

	CAUSE OF THE PROBLEM	Solution
Δ	An out-of-range parameter was	Reset all parameters in the range.
Λ	previously set or loaded	Otherwise, reload the correct parameter.
В	Circuit board (1PWB) is defective.	Replace the servo amplifier.

A7

Display and Outputs		ALARM OUTPUTS		
	AL	ARM CODE OUTPUT		
	ALO1	ALO2	ALO3	ALM OUTPUT
	OFF	OFF	OFF	OFF

A. 05: Servo Motor and Amplifier Combination Error

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

Status and Remedy for Alarm

At power ON	—А, В
	,-

	CAUSE OF THE PROBLEM	Solution
А	The range of servo motor capacities that can be combined has been exceeded.	Replace the servo motor so that an acceptable combination is achieved.
В	Encoder parameters have not been written properly.	Replace the servo motor.

A. 10: Overcurrent or Heat Sink Overheated

Display and Outputs □

its	ALARM OUTPUTS				
	AL	ARM CODE OUTPUT			
	ALO1	ALO2	ALO3	ALM OUTPUT	
	ON	OFF	OFF	OFF	

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

Status and Remedy for Alarm

	CAUSE OF THE PROBLEM	Solution
А	Shorted wiring between servo amplifier and servo motor.	Check and correct wiring.
В	Shorted servo motor U, V, or W phase.	Replace servo motor.
С	Defective circuit board (1PWB) Defective power transistor.	Replace servo amplifier.
D	Defective current feedback circuit, power transistor, DB circuit, or circuit board.	Replace servo amplifier.
Е	Ambient temperature of the servo amplifier greater than 55°C.	Alter conditions so that the ambient temperature is below 55°C.
F	Inadequate airflow around the heat sink.	Providing sufficient space as specified.
G	Fan stopped.	Replace servo amplifier.
Н	Servo amplifier is operating under an overload.	Reduce load.

Note: Problems E to H can occur in a servo amplifier with a capacity of 1.5 to 5kW, and all 400V models.

A. 30: Regenerative Error

Display and Outputs

ALARM OUTPUTS				
Alarm Code Output				
ALO1 ALO2		ALO3	ALVI OUTPUT	
ON	ON	OFF	OFF	

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

Status and Remedy for Alarm

	CAUSE OF THE PROBLEM	Solution
А	Malfunctioning regenerative transistor.	Replace servo amplifier.
В	Regenerative resistor is open.	Replace servo amplifier or regenerative resistor.
С	Disconnected regenerative unit (for an external regenerative resistor).	Check the wiring of the external regenerative resistor.
D	Defective servo amplifier.	Replace servo amplifier.

A. 31: Overflow

Display and Outputs

ALARM OUTPUTS					
AI	ARM CODE OUTPUT				
ALO1	ALO2	ALO3	ALM OUTPUT		
ON	ON	OFF	OFF		

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

	CAUSE	Remedy	
А	Servo motor wiring incorrect	Check and connect wining (Check A. D. C. Dhase	
В	Encoder wiring incorrect (disconnection, short circuit, power supply, etc.)	pulses correct at 2CN.)	
С	Servopack adjustment incorrect	Increase speed loop gain (Cn-04) and/or position loop gain (Cn-1A).	
D	Servo motor overloaded	Reduce load torque and inertia. Otherwise, replace with larger capacity servo motor.	
		Decrease reference pulse frequency.	
Е	Position reference pulse frequency too high	• Use smoothing function.	
		Charge electronic gear ratio.	
F	Circuit board (1PWB) defective	Replace Servopack	

A. 32: Regenerative Overload

Display and Outputs	ALARM OUTPUTS			
	AL	ARM CODE OUTPUT		
	ALO1	ALO2	ALO3	ALM OUTPUT
	ON	ON	OFF	OFF

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

During	During servo motor operationA, B				
	CAUSE OF THE P ROBLEM	Solution			
A	Regenerative power exceeds the limit.	Use an external regenerative resistor that matches the regenerative power capacity.			
В	Alarm occurs although an external regenerative resistor is used and the temperature rise of the regenerative resistor is small.	Correct parameter Pn600.			

A. 40: Main Circuit DC Voltage Error Detected: Overvoltage

Display and Outputs

ALARM OUTPUTS			
ALARM CODE OUTPUT			
ALO1	ALO2	ALO3	ALM OUTPUT
OFF	OFF	ON	OFF

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

Status and Remedy for Alarm

A. 41: Main Circuit DC Voltage Error Detected: Undervoltage

Display and Outputs

ALARM OUTPUTS				
AI	ARM CODE OUTPUT		ATMO	
ALO1	ALO2	ALO3	ALM OUTPUT	
OFF	OFF	ON	OFF	

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

Display and Outputs **ALARM OUTPUTS** ALARM CODE OUTPUT ALM OUTPUT ALO1 ALO2 ALO3 ON OFF ON OFF Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON Status and Remedy for Alarm When servo ON At power ON. A - E (S-ON) signal is turned ON. During high-speed – B, C servo motor rotation after a reference input. **CAUSE OF THE PROBLEM SOLUTION** Check and correct wiring. А Incorrect servo motor wiring. (Check for U-, V-, and W-phase wiring errors.) Position or speed reference input is too Lower the reference input В large. values. Check and correct parameter С Incorrect reference input gain settings. settings. D Defective circuit board (1PWB). Replace servo amplifier. A. 71: Overload: High Load A. 72: Overload: Low Load **ALARM OUTPUTS** ALARM CODE OUTPUT **Display and Outputs ALM OUTPUT** ALO1 ALO2 ALO3 The alarm output, ON ON ON OFF status, and remedy Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON for A.71 are the Status and Remedy for Alarm same as for A.72 When servo ON At power ON. A C (S-ON) signal is turned ON. When speed reference is entered.

No servo motor

No servo motor

В

В

A. 51: Overspeed

	CAUSE OF THE PROBLEM	Solution
А	Incorrect or disconnected servo motor wiring.	Check wiring and connectors at the servo motor.
В	Load greatly exceeds rated torque.	Reduce load torque and inertia. Otherwise, replace with a larger capacity servo motor.
С	Defective circuit board (1PWB).	Replace servo amplifier.

Overload Characteristics

Servo amplifiers have a built-in overload protection function that protects the servo amplifiers and servo motors from overload. Allowable power for the servo amplifiers is limited by the overload protective function, as shown in the figure below.

The overload detection level is set under hot start conditions at a servo motor ambient temperature of 40°C.

- **NOTE:** The overload protection characteristics of A and B in the figure are applicable when the servo amplifier is combined with one of the following servo motors: A: SGMAH or SGMPH servo motor with a maximum capacity of 400W, 100V and 200V only.
 - B: Other servo motors similar to the SGMAH, SGMPH, SGMGH, SGMSH, and SGMUH.

A. 73: Dynamic Brake Overload

Display and Outputs

ALARM OUTPUTS			
Alarm Code Output			
ALO1	ALO2	ALO3	ALM OUTPUT
ON	ON	ON	OFF

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

Status and Remedy for Alarm

	CAUSE OF THE PROBLEM	Solution
А	The product of the square of rotational motor speed, the combined inertia of the motor, and load (rotation energy) exceeds the capacity of the dynamic brake resistor built into servo amplifier.	 Reduce the rotational speed. Decrease the load inertia. Minimize use of the dynamic brake.
В	Defective circuit board (1PWB).	Replace servo amplifier.

A. 74: Overload of Surge Current Limit Resistor

Display and Outputs

ALARM OUTPUTS			
Alarm Code Output			
ALO1	ALO2	ALO3	ALM OUTPUT
ON	ON	ON	OFF

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

CAUSE OF THE PROBLEM		SOLUTION
А	Frequently turning the main circuit power ON/OFF.	Do not repeatedly turn ON/ OFF the main circuit power.
В	Defective circuit board (1PWB).	Replace servo amplifier.

A. 7A Heat Sink Overheated

Display and Outputs

ALARM OUTPUTS			
AI	ARM CODE OUTPUT		
ALO1	ALO2	ALO3	ALM OUTPUT
ON	ON	ON	OFF

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

Status and Remedy for Alarm

During servo motor	A, B	When control power	F
operation	C, D	is turned ON.	Ľ

	CAUSE OF THE PROBLEM	Solution
A	The ambient temperature of the servo amplifier exceeds 55°C.	Alter conditions so that the ambient temperature goes below 55°C.
В	Inadequate air flow around the heat sink .	Provide sufficient space as specified.
С	Fan stopped.	Replace servo amplifier.
D	Servo amplifier is operating under overload.	Reduce load.
E	Defective servo amplifier.	Replace servo amplifier.

Note: Larger servo amplifiers (1.5kW., or larger) will display alarm A.10 if the heat sink overheats.

A. 81: Absolute Encoder Backup Power Supply Error

Display and Outputs

ALARM OUTPUTS			
AI	ARM CODE OUTPUT		
ALO1	ALO2	ALO3	ALM OUTPUT
OFF	OFF	OFF	OFF

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

A. 80: Position Error

Display and Outputs

ALARM OUTPUTS			
AI	ARM CODE OUTPUT		
ALO1	ALO2	ALO3	ALVI OUTPUT
OFF	OFF	OFF	OFF

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

	CAUSE	REMEDY
А	Incorrect absolute encoder wiring (PA, PB, RESET, SEN signal (for speed control), etc.)	Check and correct the absolute encoder wiring.
В	Absolute encoder malfunctioned	 For speed control (Cn-01 Bit 1=0), turn SEN signal OFF and back ON. For speed control (Cn-01 Bit 1=1) or position control, turn Servopack power OFF and back ON.
С	Circuit board (1PWB) defective	Replace Servopack.
D	Error occurred in absolute encoder. Another encoder alarm displayed when SEN signal or power supply turned back ON.	 For speed control (Cn-01 Bit 1=0), turn SEN signal OFF and back ON (if servo motor is rotating, first turn servo OFF). For speed control (Cn-01 Bit 1=1) or position control, turn Servopack power OFF and Back ON.
Е	Servopack miscounted pulses (positional displacement) or malfunctioned due to noise.	 Separate encode wiring from main wiring circuits. For speed control (Cn-01 Bit 1=0), turn SEN signal OFF and back ON (if servo motor is rotating, first turn servo OFF). For speed control (Cn-01 Bit 1=1) or position control, turn Servopack power OFF and back ON.

A. 81: Absolute Encoder Backup Power Supply Error

Display and Outputs

ALARM OUTPUTS				
AI	ARM CODE OUTPUT			
ALO1	ALO2	ALO3	ALM OUTPUT	
OFF	OFF	OFF	OFF	

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

Status and Remedy for Alarm

CAUSE OF THE PROBLEM		Solution
А	The following power supplies to the absolute encoder both failed: • +5V supply • Battery power	Follow absolute encoder setup procedure.
В	Absolute encoder malfunctioned.	Replace servo motor.
С	Defective circuit board (1PWB).	Replace servo amplifier.

A. 82: Encoder Checksum Error

Display and Outputs

ALARM OUTPUTS					
	ALARM CODE OUTPUT				
ALM OUTPUT	ALO3	ALO2	ALO1		
OFF	OFF	OFF	OFF		

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

	CAUSE OF THE PROBLEM	Solution
А	Error during encoder memory check.	 Follow absolute encoder setup procedure. Replace servo motor if error occurs frequently.
В	Defective circuit board (1PWB).	Replace servo amplifier.

A. 83: Absolute Encoder Battery Error

Display and Outputs

ALARM OUTPUTS				
ALARM CODE OUTPUT				
ALO1	ALO2	ALO3	ALM OUTPUT	
OFF	OFF	OFF	OFF	

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

Status and Remedy for Alarm

(CAUSE OF THE PROBLEM	Solution
А	 Disconnected battery. Defective battery connection. 	Check and correct battery connection.
В	Battery voltage below specified value. Specified value: 2.7V.	Install a new battery while the control power to the servo amplifier is ON. After replacement, cycle the power OFF and ON again.
С	Defective circuit board (1PWB).	Replace servo amplifier.*

* The replacement procedure is described in *Section 9.1.3* "*Replacing the Battery for the Absolute Encoder*".

NOTE: No alarm will occur at the servo amplifier if the battery error occurs during operation.

A. 84: Absolute Encoder Data Error

Display and Outputs

Alarm Outputs				
Alarm Code Output				
ALO1	ALO2	ALO3	ALM OUTPUT	
OFF	OFF	OFF	OFF	

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

Status and Remedy for Alarm

At power ON.	A, B
--------------	------

CAUSE OF THE PROBLEM		Solution
А	Malfunctioning absolute encoder.	Replace servo motor if error occurs frequently.
В	Operational error in encoder caused by external noise	Check and correct wiring around the encoder, (grounding of servo motor, separation of encoder and power cables, insertion of toroidal cores onto cables to reduce noise, etc.)

A. 85: Absolute Encoder Overspeed

Display and Outputs

ALARM OUTPUTS				
ALARM CODE OUTPUT				
ALO3 ALM OUTPU	ALO3	ALO2	ALO1	
OFF OFF	OFF	OFF	OFF	

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

(Cause of the Problem	Solution
А	Absolute encoder turned ON at motor speed exceeding 200rpm.	Turn ON power supply with the servo motor stopped.
В	Defective circuit board (1PWB).	Replace servo amplifier.

A. 86: Encoder Overheated

Display and Outputs

ALARM OUTPUTS			
AI	ARM CODE OUTPUT		
ALO1	ALO2	ALO3	ALM OUTPUT
OFF	OFF	OFF	OFF

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

Status and Remedy for Alarm

At power ON.	A, B	When the control panel is turned ON.	C, D
--------------	------	--------------------------------------	------

CAUSE OF THE PROBLEM		Solution
А	The ambient temperature of the servo motor is high.	Alter conditions so that the ambient temperature goes below 40°C.
В	Servo motor is operating under overload.	Reduce load.
С	Defective circuit board (1PWB).	Replace servo amplifier.
D	Encoder defective.	Replace servo amplifier.

A. 99: Alarm Reset (Not Alarm)

Display and Outputs

ALARM OUTPUTS			
Alarm Code Output			
ALO1	ALO2	ALO3	ALM OUTPUT
OFF	OFF	OFF	ON

Note: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON

Status and Remedy for Alarm

Indicates normal operation. Not an alarm.

A. b1: Reference Speed Input Read Error

A. b2: Reference Torque Input Read Error

The alarm output, status, and remedy for A.b1 are the same as for A.b2

Display and Outputs

Alarm Outputs			
Alarm Code Output			
ALO1	ALO2	ALO3	ALM OUTPUT
OFF	OFF	OFF	OFF

NOTE: OFF: Output transistor is OFF (alarm state).

During servo motor operation.	A, B	At power ON.	A, B, C,
-------------------------------	------	--------------	----------

	Cause of the P roblem	Solution
А	Error in reference read-in unit (A/D Converter, etc.).	Reset alarm and restart operation.
В	Faulty reference read-in unit (A/D Converter, etc.).	Replace servo amplifier.
С	Defective circuit board (1PWB).	Replace servo amplifier.

A. C1: Servo Run Away

Display and Outputs

ALARM OUTPUTS			
Alarm Code Output			
ALO1	ALO2	ALO3	ALM OUTPUT
ON	OFF	ON	OFF

NOTE: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON.

(CAUSE OF THE Problem	Solution
А	Incorrect or disconnected servo motor wiring.	Check wiring and connectors at the servo motor.
В	Incorrect or disconnected encoder wiring.	Check wiring and connectors at the encoder.
С	Defective encoder.	Replace servo motor.
D	Defective circuit board (1PWB).	Replace servo amplifier.

A. C2: Commutation (Phase Finding) Error

Display and Outputs

ALARM OUTPUTS			
Alarm Code Output			
ALO1	ALO2	ALO3	ALM OUTPUT
ON	OFF	ON	OFF

NOTE: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON.

Status and Remedy for Alarm

At first motor on	
sequence after power-	A. B. C
up, using motor with	7 7 -
A quad B encoder.	

	CAUSE OF THE PROBLEM	Solution
А	Motor parameters are faulty	Ask your local distributor for a new parameters file.
в	The initial value of Pn191.0 (phase order) is not correct	Set Pn191.0 to 0. (The XtraDrive will automatically find the right phase order and update this parameter value).
С	Undesired motor motion was detected when the motor was turned on for the first time after power-up	Before turning servo on, be sure that there is no mechanical movements/ vibrations

A. C3: PA, PB-Phase Disconnection of PG Signal Line

Display and Outputs

ALARM OUTPUTS					
AL	ALARM CODE OUTPUT				
ALO1	ALO2	ALO3	ALM OUTPUT		
ON	OFF	ON	OFF		

NOTE: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON.

Status and Remedy for Alarm

	CAUSE	REMEDY
А	Encoder wiring incorrect or poor connection	Check wiring and connectors at encoder.
В	Noise in encoder wiring.	Separate encoder wiring from main wiring circuits.
С	Encoder defective	Replace servo motor.
D	Circuit board (1 PWB) defective	Replace Servopack.

A. C4: PC-Phase Disconnection of PG Signal Line

Display and Outputs

ALARM OUTPUTS					
Alarm Code Output					
ALO1	ALO2	ALO3	ALM OUTPUT		
ON	OFF	ON	OFF		

NOTE: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON.
INSPECTION, MAINTENANCE, A25 AND TROUBLESHOOTING

Status and Remedy for Alarm

	CAUSE	Remedy
А	Encoder wiring incorrect or poor connection	Check wiring and connectors at encoder.
В	Noise in encoder wiring.	Separate encoder wiring from main wiring circuits.
С	Encoder defective	Replace servo motor.
D	Circuit board (1 PWB) defective	Replace Servopack.

A. C8: Absolute Encoder Clear Error and Multi-Turn Limit Setting Error

Display and Outputs

ALARM OUTPUTS					
AL	ARM CODE OUTPUT				
ALO1	ALO2	ALO3	ALM OUTPUT		
ON	OFF	ON	OFF		

NOTE: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON.

Servo amplifier defective.

Status and Remedy for Alarm

В

A	At power ON		——————————————————————————————————————	When turn c	resetting the multi- lear encoder alarm	——————————————————————————————————————
	CAUSE OF THE PROBLEM			Soluti	ION	
	A Encoder defective.			Replace servo m	otor.	

101 15 01 1	(alarin state).		
or is ON.			

Replace servo amplifier.

A. C9: Encoder Communications Error

Display and Outputs

ALARM OUTPUTS				
AI	ARM CODE OUTPUT			
ALO1	ALO2	ALO3	ALM OUTPUT	
ON	OFF	ON	OFF	

NOTE: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON.

Status and Remedy for Alarm

During servo motor _ operation.	——————————————————————————————————————	At power ON.	——— A, B, C
---------------------------------	--	--------------	-------------

	Cause of the P roblem	Solution
А	Incorrect or disconnected encoder wiring.	Check wiring and connectors at the encoder.
В	Defective encoder.	Replace servo motor.
С	Defective servo amplifier.	Replace servo amplifier.

A. CA: Encoder Parameter Error

Display and Outputs

Alarm Outputs				
AI	ARM CODE OUTPUT			
ALO1	ALO2	ALO3	ALM OUTPUT	
ON	OFF	ON	OFF	

NOTE: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON.

Status and Remedy for Alarm

	CAUSE OF THE P ROBLEM	Solution
А	Defective encoder.	Replace servo motor.
В	Defective servo amplifier.	Replace servo amplifier.

A. Cb: Encoder Echoback Error

Display and Outputs

Alarm Outputs				
AL	ARM CODE OUTPUT			
ALO1	ALO2	ALO3	ALM OUTPUT	
ON	OFF	ON	OFF	

NOTE: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON.

Status and Remedy for Alarm

At power ON.

——А, В

	Cause of the P roblem	Solution
А	Incorrect or disconnected encoder wiring.	Check wiring and connectors at encoder.
В	Defective encoder.	Replace servo motor.
С	Defective servo amplifier.	Replace servo amplifier.

A. CC: Multi-Turn Limit Disagreement Alarm

Display and Outputs

ALARM OUTPUTS				
AI	ARM CODE OUTPUT			
ALO1	ALO2	ALO3	ALM OUTPUT	
ON	OFF	ON	OFF	

NOTE: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON.

Status	s and	Remedy for Alarm	At po	wer ON.	A, B
	CAUSE OF THE PROBLEM A Incorrectly set Multi-Turn Limit A Setting parameter (Pn205) in the servo amplifier. Setting parameter (Pn205) in the		EM		Solution
			rn Limit 5) in the	Change the value in parameter Pn205	
	B No Multi-Turn Limit value set i the encoder.		ue set in	First verify that the Multi-Turn Limi Setting parameter (Pn205) is set correctly in the servo amplifier. Whi in the active alarm state, change the setting in the encoder Multi-Turn Limit Setting parameter (Pn205) using function Fn013.	

A. d0: Position Error Pulse Overflow

Display and Outputs

Alarm Outputs				
AI				
ALO1	ALO2	ALO3	ALM OUTPUT	
ON	ON	OFF	OFF	

NOTE: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON.

Status and Remedy for Alarm

	CAUSE OF THE PROBLEM	Solution
А	Servo motor wiring incorrect or poor connection	Check wiring and connectors at encoder.
В	Servo amplifier was not correctly adjusted.	Increase speed loop gain (Pn100) and position loop gain (Pn102).
С	Motor load was excessive.	Reduce load torque or inertia. If problem persists, replace with a larger capacity motor.
D	Position reference pulse frequency was too high.	 Increase or decrease reference pulse frequency. Add smoothing function. Correct electronic gear ratio.
Е	Circuit board (1PWB) defective.	Replace servo amplifier.

A. E7: Option Unit Detection Error

A.E7 occurs the first time the SGDH amplifier is used after disconnecting an option unit. This alarm cannot be cleared with an alarm reset; instead, clear it with function Fn014.

Display and Output

	ALARM OUTPUTS				
uts	AI				
	ALO1	ALO2	ALO3	ALIVI OUTPUT	
	ON	ON	OFF	OFF	

Note: OFF: Output transistor is OFF (alarm state).

ON: Output transistor is ON.

Status and Remedy for Alarm

At power ON.	——— E	At power ON.	—— Е
--------------	-------	--------------	------

(Cause of the Prob lem	Solution
А	The SGDH amplifier is used immediately after disconnection of an option unit without clearing the unit detector.	To use the SGDH amplifier after disconnecting the option unit, execute Fn014 (option unit detection result clear), in the auxiliary function mode, and then cycle the power.
В	Option unit connection is defective.	Check and correct the connection.
С	Option unit is defective.	Replace the option unit.
D	Servo amplifier	Replace the servo amplifier.

A. F1: Power Line Open Phase

Status and Remedy for Alarm

Display and Outputs				
	AL	ARM CODE OUTPUT		
	ALO1	ALO2	ALO3	ALM OUTPUT
	ON	ON	OFF	OFF

NOTE: OFF: Output transistor is OFF (alarm state). ON: Output transistor is ON.

	When the main circuit's power supply is turned ON.	When the control power is turned ON.		
	CAUSE OF THE PROBLEM	Solution		
А	One phase (L1, L2, or L3) of the main circuit power supply is disconnected.	 Check power supply. Check wiring of the main circuit power supply. Check MCCB, noise filter, magnetic contactor. 		
В	There is one phase where the line voltage is low.	Check power supply.		
С	Servo amplifier defective.	Replace servo amplifier.		

NOTE: A and B tend to occur in a servo amplifier with a capacity of 500W or higher.

CPF00: Digital Operator Transmission Error 1

This alarm is not stored in the alarm history.

Display and Outputs

DISUI	av anu	Outputs					
		- · · I · · · ·		TS			
	Alarm Code Outpu			T			
ALO1		ALO1	ALO2	ALC)3	ALM OUTPUT	
Not A _I			pplicabl	e			
Statu	s and F	Remedy f	or Alarm			1	
				When digital oper connected before the servo amplifie been turned ON.	ator is or after r has		A, B, C, D
	CAUSE OF THE PROBLEM					Solution	
	A Cable defective or poor contact between digital operator and servo amplifier.		Check connector connections.Replace cable.		onnector connections. cable.		
	B Malfunction due to exte		ternal noise.	ernal noise. Separate d cable from		igital operator and noise source.	
	С	Digital	operator defective.		Replace digital operator.		
	D	Servo a	mplifier defect	ive.	Replace servo amplifier.		

CPF01: Digital Operator Transmission Error 2

This alarm is not stored in the alarm history.

Display and Outputs

В

С

D

ALARM OUTPUTS					
AL	ARM CODE OUTPU				
ALO1	ALO2	ALO3	ALM OUTPUT		
Not Applicable					

cable from noise source.

Replace digital operator.

Replace servo amplifier.

 Status and Remedy for Alarm

 During servo motor operation.

 A, B, C, D

 CAUSE OF THE PROBLEM

 A
 Cable defective or poor contact between digital operator and servo amplifier.

 A
 Cable defective or poor contact between digital operator and servo amplifier.

 B
 Malformation due to external paige

Malfunction due to external noise.

Digital operator defective.

Servo amplifier defective.

A. - -: Normal Operation

This alarm is not stored in the alarm history.

Display and Outputs

Alarm Outputs				
AI				
ALO1	ALO2	ALO3	ALVI OUTPUT	
OFF	OFF	OFF	ON	

Note: OFF: Output transistor is OFF (alarm state).

A 2.2 TROUBLE SHOOTING PROBLEMS WITH NO ALARM DISPLAY

Use the tables below to identify the cause of a problem that causes no alarm display and follow the described corrective procedure.

Turn OFF the servo system power supply before starting the shaded procedures.

Contact YET if the problem cannot be solved by carefully following the described procedure.

S умртом	CAUSE	Comment	Solution	
	Power not connected	Check voltage between	Correct the power circuit	
		power supply terminals.	r	
	Loose connection	Check terminals of connectors (CN1, CN2).	Tighten any loose parts.	
	Connector (CN1) external wiring incorrect	Check connector (CN1) external wiring	Refer to connection diagram and correct wiring.	
	Servo motor or encoder wiring disconnected.	_	Reconnect wiring	
	Overloaded	Run under no load.	Reduce load or replace with larger capacity servo motor.	
	No speed/position references input	Check reference input pins.	Correctly input speed/ position references.	
Servo motor does not start	/S-ON is turned OFF	Check settings of parameters Pn50A.0 and Pn50A.1.	Turn /S-ON input ON.	
	/P-CON input function setting incorrect	Check parameter Pn000.1.	Refer to <i>Chapter 7.4.1</i> and set parameters to match application.	
	Reference pulse mode selection incorrect.	Refer to Chapter 7.2.2	Correct setting of parameter Pn200.0.	
	Encoder type differs from parameter setting.	Confirm whether incremental or absolute encoder is used.	Set parameter Pn002.2 to the encoder type being used.	
	P-OT and N-OT inputs are turned OFF.	Refer to Chapter 7.1.2	Turn P-OT and N-OT input signals ON.	
	CLR input is turned ON	Check status of error counter clear input.	Turn CLR input OFF.	
	SEN input is turned OFF.	When absolute encoder is used.	Turn SEN input ON.	
Servo motor moves suddenly, then stops	Servo motor or encoder wiring incorrect.	_	Refer to chapter 3 ?/and correct wiring.	
Suddenly stops during operation and will not restart	Alarm reset signal (/ALM-RST) is turned ON because an alarm occurred	_	Remove cause of alarm. Turn alarm reset signal (ALM-RST) from ON to OFF.	

Appendix A

INSPECTION, MAINTENANCE, AND TROUBLESHOOTING

S умртом	CAUSE	Comment	Solution
Unstable servo- motor speed.	Defective wiring connection to the motor.	Check the connections of the power lead (U-, V-, and W-phases) and the encoder connectors.	Tighten any loose terminals or connectors
	Speed loop gain value too high.		Reduce speed loop gain (Pn100) preset value.
Servo motor vibrates at approximately 200 to 400Hz	Speed/position reference input wire too long.		Minimize length of speed/ position reference input wire, with impedance not exceeding several hundred ohms
200 10 400112.	Speed/position reference input wire is bundled with power cables.		Separate reference input wire at least 30cm from power cables.
High rotation	Speed loop gain value too high.		Reduce speed loop gain (Pn100) preset value. Increase integration time constant (Pn101).
speed overshoot on starting and stopping.	Speed loop gain is too low compared to position loop gain.	_	Increase the value of parameter Pn100 (speed loop gain). Reduce the integration time constant (Pn101).
	Ambient temperature too high	Measure servo motor ambient temperature.	Reduce ambient temperature to 40°C maximum.
Servo motor overheated	Servo motor surface dirty	Visual check	Clean dust and oil from motor surface.
	Overloaded	Run under no load.	Reduce load or replace with larger capacity servo motor.
	Incorrect mechanical	Servo motor mounting screws loose?	Tighten mounting screws.
	mounting	Coupling not centered?	Center coupling.
		Coupling unbalanced?	Balance coupling.
Abnormal noise	Bearing defective	Check noise and vibration near bearing.	Consult your YET representative if defective.
	Machine causing vibrations	Foreign object intrusion, damage, or deformation of sliding parts of machine.	Consult with machine manufacturer.
Speed reference 0V but servo motor rotates.	Speed reference voltage offset applied		Adjust reference offset. Refer to <i>Chapter 7.5.1</i>

A33

A 2.3 ALARM DISPLAY TABLE

Alarm	Alarn	M CODE O	UTPUT	ALM		
DISPLAY	AL01	AL02	AL03	OUTPUT	Alarm Name	DESCRIPTION
A.00					Multi-turn data error	
A.02					Parameter Breakdown*	EEPROM data of servo amplifier is abnormal.
A.03	OFF	OFF	OFF	OFF	Main Circuit Encoder Error	Detection data for power circuit is abnormal.
A.04					Parameter Setting Error*	The parameter setting is outside the allowable setting range.
A.05					Servo motor and Amplifier Combination Error	Servo amplifier and servo motor capacities do no match each other.
A.10	ON	OFF	OFF	OFF	Overcurrent or Heat Sink Overheated**	An overcurrent flowed through the IGBT. Heat sink of servo amplifier was overheated.
A.30					Regeneration Error Detected	•Regenerative circuit is faulty •Regenerative resistor is faulty.
A.31	ON ON		OFF	OFF	Overflow	
A.32					Regenerative Overload	Regenerative energy exceeds regenerative resistor capacity.
A.40	OFF	OFF	ON	OFF	Overvoltage	Main circuit DC voltage is excessively high.
A.41	OFF	OFF		OFF	Undervoltage	Main circuit DC voltage is excessively low.
A.51	ON	OFF	ON	OFF	Overspeed	Rotational speed of the motor is excessively high.
A.71					Overload: High Load	The motor was operating for several seconds to several tens of seconds under a torque largely exceeding ratings.
A.72					Overload: Low Load	The motor was operating continuously under a torque largely exceeding ratings
A.73	ON	ON	ON	OFF	Dynamic Brake Overload	When the dynamic brake was applied, rotational energy exceeded the capacity of dynamic brake resistor.
A.74					Overload of Surge	The main circuit power was
	-				Current Limit Resistor	trequently turned ON and OFF.
A.7A					Heat Sink Overheated **	The heat sink of servo amplifier overheated.

A summary of alarm displays and alarm code outputs is given in the following table.

* These alarms are not reset by the alarm reset signal (/ALM-RST). Eliminate the cause of the alarm and then turn OFF the power supply to reset the alarms. **This alarm display appears only within the range of 30W to 1kW.

Note: OFF: Output transistor is OFF. ON: Output transistor is ON.

ALARM	ALARM	A CODE O	UTPUT				
DISPLAY	AL01	AL02	AL03	OUTPUT	Alarm Name	DESCRIPTION	
A.80					Position error		
A.81					Absolute Encoder Backup Error*	All the power supplies for the absolute encoder have failed and position data was cleared.	
A.82					Encoder Checksum Error*	The checksum results of encoder memory is abnormal.	
A.83					Absolute Encoder Battery Error	Battery voltage for the absolute encoder has dropped.	
A.84					Absolute Encoder Data Error*	Received absolute data is abnormal.	
A.85	OFF	OFF	OFF OF	OFF	OFF	Absolute Encoder Overspeed	The encoder was rotating at high speed when the power was turned ON.
A.86					Encoder Overheated	The internal temperature of encoder is too high.	
A.b1				Reference Speed Input Read Error	The A/D converter for reference speed input is faulty.		
A.b2				Reference Torque Input Read Error	The A/D converter for reference torque input is faulty.		
A.bF					System Alarm*	A system error occurred in the servo amplifier.	
A.C1					Servo Overrun Detected	The servo motor ran out of control.	
A.C2					Phase Finding Error	The commutation (phase finding) procedure for motor with A quad B encoder was faulty	
A.C3	ON			OFF	PA, PB-phase disconnection of PG signal line		
A.C4		ON OFF ON	UFF	PC-phase disconnection of PG signal line			
A.C8					Absolute Encoder Clear Error and Multi-Turn Limit Setting Error*	The multi-turn for the absolute encoder was not properly cleared or set.	
A.C9					Encoder Communications Error**	Communications between servo amplifier and encoder is not possible.	

* These alarms are not reset by the alarm reset signal (/ALM-RST). Eliminate the cause of the alarm and then turn OFF the power supply to reset the alarms.

**This alarm display appears only within the range of 30W to 1kW.

NOTE: OFF: Output transistor is OFF. ON: Output transistor is ON.

A35

Alarm	Aları	n Code Oı	itput	ALM			
Display	AL01	AL02	AL03	Output	Alarm Name	Description	
A.CA					Encoder Parameter Error*	Encoder parameters are faulty.	
A.Cb	ON	OFF	ON	OFF	Encoder Echo back Error*	Contents of communications with encoder is incorrect.	
A.CC	ON	OFF	ON	OFF	Multi-Turn Limit Disagreement	Different multi-turn limits have been set in the encoder and servo amplifier.	
A.d0	ON	ON	OFF	OFF	Position Error Pulse Overflow	Position error pulse exceeded parameter (Pn505).	
A.E7	OFF	ON	ON	OFF	Option Unit Detection Error	Option unit detection fails.	
A.F1	OFF	ON	OFF	OFF	Power Line Open Phase	One phase is not connected in the main power supply	
A.99	OFF	OFF	OFFO	OFF	Alarm reset		
A	OFF	OFF	OFF	ON	Not an error	Normal operation status	
CPF00						Digital operator (JUSP-OP02A-	
CPF01	Not Specified		Digital Operator Transmission Error	2) fails to communicate with servo amplifier (e.g., CPU error).			

* These alarms are not reset by the alarm reset signal (/ALM-RST). Eliminate the cause of the alarm and then turn OFF the power supply to reset the alarms.

**This alarm display appears only within the range of 30W to 1kW.

NOTE: OFF: Output transistor is OFF. ON: Output transistor is ON.

A 2.4 WARNING DISPLAYS

The correlation between warning displays and warning code outputs is shown in the following table.

WARNING	WARNIN	NG CODE O	UTPUTS	WARNING	
DISPLAY	ALO1	ALO2	ALO3	NAME	MEANING OF WARNING
A.91	ON	OFF	OFF	Overload	This warning occurs before either of the overload alarms (A.71 or A.72) occurs. If the warning is ignored and operation continues, an overload alarm may result.
A.92	OFF	ON	OFF	Regenerative Overload	This warning occurs before the regenerative overload alarm (A.32) occurs. If the warning is ignored and operation continues, a regenerative overload alarm may result.

B2 XtraDrive Users Guide

Page is intentionally left blank - for you to fill with your own notes.

B1 WIRING PRECAUTIONS

This appendix provides examples for XtraDrive servo amplifiers connected to typical host controllers. Refer to the manuals for the host controller when actually connecting to them.

To ensure safe and stable operation, always observe the following wiring precautions:

1. Always use the following cables for reference input and encoder wiring.

-	CABLE TYPE	YASKAWA Drawing Number	MAXIMUM ALLOWABLE LENGT		
Reference Input	Twisted pair wires	JZSP-CKI01	118in (3m)		
Encoder	Multi-conductor	JZSP-CMP00	SGMAH, SGMPH	787in (20m)	
Encoder	air wire	JZSP-CMP02	SGMGH, SGMSH	1969in (50m)	

• Trim off the excess portion of the cable to minimize the cable length.

- **2**. For a ground wire use as large a wire as possible: AWG14 (2.0mm²) or larger.
 - At least class-3 ground (100Ω . maximum) is recommended.
 - Ground to one point only.
 - If the motor is insulated from the machine, ground the motor directly.
- **3.** Do not bend or apply tension to cables. The conductor of a signal cable is very thin (0.0079 to 0.012in. (0.2 to 0.3mm)), handle the cables with care.
- 4. Use a noise filter to prevent noise interference. (For details, refer to *Appendix B 2, page B-6 "Wiring for Noise Control"*).
 - If the equipment is to be used near private houses or may receive noise interference, install a noise filter on the input side of the power supply line.
 - Since this servo amplifier is designed as an industrial device,

- **5.** To prevent malfunction due to noise, take the following actions:
 - Position the input reference device and noise filter as close to the servo amplifier as possible.
 - Always install a surge absorber circuit in the relay, solenoid, and electromagnetic contactor coils.
 - The distance between a power line (such as a power supply line or motor cable) and a signal line must be at least 11.8 in (30 cm). Do not put the power and signal lines in the same duct or bundle them together.
 - Do not share the power supply with an electric welder or electrical discharge machine. When the servo amplifier is placed near a high-frequency oscillator, install a noise filter on the input side of the power supply line.
- **NOTE:** 1. Since the servo amplifier uses high-speed switching elements, signal lines may receive noise. To prevent this, always take the above precautions.
 - 2. For details on grounding and noise filters, *refer to Appendix B 2, page B-6 "Wiring for Noise Control"*.
- 6. Use a UL listed molded-case circuit breaker (MCCB) or fuse in accordance with the National Electrical Code (NEC) to protect the power supply line from high voltage.
 - This servo amplifier connects directly to a commercial power supply without a transformer, so always use an MCCB or fuse to protect the servo system from accidental high voltage.
 - Select an appropriate MCCB or fuse according to the servo amplifier capacity and the number of servo amplifiers to be used as shown in the following table.

SERVO AMPLIFIER POWER **CURRENT** MAIN CIRCUIT MODEL **CAPACITY PER CAPACITY PER APPLICABLE** POWER Servo MCCB or Capacity Motor XD-SUPPLY AMPLIFIER $FUSE(A_{RMS})^*$ (kW) ** (KVA)* 0.05 Ρ5 SGMAH-A5A 0.25 SGMAH-01A 01 0.10 0.40 4 SGMPH-01A SGMAH-02A 0.20 0.75 02 Single-phase SGMPH-02A 200V SGMAH-04A 0.40 04 1.2 8 SGMPH-04A SGMAH-08A 0.75 80 2.1 11 SGMPH-08A 1.50 15 SGMPH-15A 4.0 19 SGMGH-09D SGMSH-10D 1.0 10 2.3 3.4 Three-phase SGMUH-10D 400V SGMGH-09D 2.0 20 4.9 7.1

MCCB or Fuse According to Power Capacity

The following table shows the MCCB or fuse capacity for each power supply capacity.

* This is the net value at the rated load. When actually selecting fuses, determine the capacity using the prescribed derating.

SGMSH-10D

- ** Operating characteristics (at 25°C): 2 seconds or more for 200%, 0.01 second or more for 700%
- **NOTE:** 1. A fast-operating fuse cannot be used because the servo amplifier power supply is a capacitor input type. A fast-operating fuse may blow when the power is turned ON.
 - 2. XtraDrive servo amplifiers do not have built-in ground protection circuits. To configure a safer system, install a ground fault interrupter with or without a circuit breaker for protection against overload and short circuit conditions.

B 2 WIRING FOR NOISE CONTROL

This servo amplifier uses high-speed switching elements in the main circuit. It may receive "switching noise" from these high-speed switching elements if wiring or grounding around the servo amplifier is not appropriate. To prevent this, always wire and ground the servo amplifier correctly.

This servo amplifier has a built-in microprocessor (CPU). To protect it from external noise install a noise filter in the appropriate place.

Wiring Example

The following is an example of wiring for noise control.

- Note 1. For ground wires connected to the casing, use a thick wire with a thickness of ar least 3.5mm² (0.005in ²) (preferably.plain stritch cooper wire).
 - 2. For wires indicated by P $\frac{1}{2}$ use twisted-pair wires whenever possible.
 - 3. When using a noise filter, follow the precautions in. Using Noise Filters.
- **NOTE:** * When using a noise filter, follow the precautions in Using Noise Filters on the following page.
 - ** For ground wires connecting to the casing, use a wire with a thickness of at least 0.005in² (3.5mm²), preferably a braided flat copper wire.

Correct Grounding

Grounding the Motor Frame

Always connect servo motor's frame terminal FG to the XtraDrive's ground terminal \bigoplus . Also be sure to ground the ground terminal \bigoplus .

If the servo motor is grounded via the machine, switching noise current will flow from the servo amplifier power unit through motor stray capacitance. The grounding of the motor frame is required to prevent the adverse effects of switching noise.

Noise on the Reference Input Line

If the reference input line is affected by noise, ground the 0V line (SG) of the reference input line. If the main circuit wiring for the motor is accommodated in a metal conduit, ground the conduit and its junction box.

All grounds must be made to only one point in the system.

Using Noise Filters

Use a noise suppression filter to prevent noise generated by the power supply line. Install a noise filter on the power supply line for peripheral equipment as necessary.

The following table recommends noise filters for each servo amplifier model.

Vortege		R ECOMMENDED NOISE FILTER		
V OLTAGE	SERVO AMPLIFIER WIODEL	Model	MANUFACTURER	
Single-phase,		EN2070 C/07		
200V	AD - P3 to AD - 02	FIN2070-0/07		
	XD - 04	FN2070-10/07		
Three-phase,	XD - 08	FN2070-16/07	Schaffner	
400V	XD -15	FN350-30/33		
	XD -10	FN258L-7/07		

NOTE: Filters manufactured by Schaffner.

Installation and Wiring a Noise Filter

Incorrect application of a noise filter significantly reduces its benefits. Follow these instructions for the best results.

• Separate the input lines from the output lines. Do not put the input and output lines in the same duct or bundle them together.

• Isolate the noise filter ground wire from the output lines. Do not put the noise filter ground wire, output lines and other signal lines in the same duct or bundle them together.

• Connect the noise filter ground wire directly to the ground plate. Do not connect the noise filter ground wire to other ground wires.

• When grounding a noise filter inside an enclosure: If a noise filter is located inside an enclosure, connect the noise filter ground wire and the ground wires from other devices inside to the ground plate for the enclosure first, then ground these wires.

B 3

USING MORE THAN ONE XTRADRIVE

The following diagram is an example of the wiring when more than one XtraDrive is used.

NOTE: Wire the system to comply to National Electrical Code.

Connect the alarm output (ALM) terminals for the three servo amplifiers in series to enable alarm detection relay 1RY to operate. The output transistor is turned OFF when the ALM output signal enters an alarm state.

Multiple servos can share a single MCCB or noise filter. Always select an MCCB or noise filter that has enough capacity for the total power capacity (load conditions) of those servos. For details, refer to *Appendix B 1, page B-3 "Wiring Precautions"*.

4 EXTENDING ENCODER CABLES

Standard encoder cables have a maximum length of 20m. If a longer cable is required, prepare an extension cable as described below. The maximum allowable cable length is 50m.

Preparing 50m (164.0 ft) Encoder Cables

- Cable Model Number: UL2076-SB Cables are ordered in units of meters. Specify the length, when ordering.
- Connectors or Connector Kits

(Model	
XtraDrive end	Encoder connector (CN2) socket	JZSP-CMP9-1
	Encoder connector socket for SGMAH and SGMPH servo motors	JZSP-CMP9-2
Motor end	Encoder connector plug and cable plug for SGMGH and SGMSH servo motors	Plug L: MS3108B20-29S Straight: MS3106B20-29S Cable clamp: MS3057-12A

• Preparing Encoder Cables

B4

B 5

400 V Power Supply Voltage

• Do not connect the servo amplifier directly to any voltage level other than what is specified on the servo motor.

Doing so will destroy the servo amplifier.

There are 3 types of XtraDrive servo amplifiers. The power supply voltages are: single-phase 200 Vac_{ac}, three-phase 200V and three-phase 400 Vac_{ac}.

For 200V servo amplifiers that use three-phase 400 Vac_{ac} power supply, prepare the following voltage conversion transformer (single-phase or three-phase).

PRIMARY VOLTAGE	SECONDARY VOLTAGE
400 V_{ac} or 440 V_{ac}	$200 \mathrm{V}_{\mathrm{ac}}$

Refer to the capacities shown in the following table when selecting a voltage conversion transformer.

Voltage	Servo Amplifier Model	Voltage capacity per Servo Amplifier [*] kVA
	XD-P5	0.25
Single-phase	XD-01	0.40
Single pluse	XD-02	0.75
200V	XD-04	1.2
ac	XD-08	2.1

* This is the net value at the rated load.

Turn the power supply ON and OFF at the primary winding of the voltage conversion transformer when using a 400V class power supply.

Transformer inductance will cause a voltage surge if the power is turned ON at the secondary winding, damaging the servo amplifier.

B 6 REACTOR FOR **H**ARMONIC SUPPRESSION

XtraDrive servo amplifiers have DC reactor connection terminals for power supply harmonic suppression.

Connecting a DC Reactor

The DC reactor is connected in series to the rectifier circuit's output side.

By default XtraDrive shipped with (+)1 and (+)2 terminal short-circuited. Remove the lead wire between the two terminals and connect the DC reactor instead.

DC Reactor Specifications

For DC reactor specifications provided by Yaskawa refer to *Appendix E 2, page E-5,* "DC Reactors for Power Supplies Designed for Minimum Harmonics".

C2 XtraDrive Users Guide

Page is intentionally left blank - for you to fill with your own notes.

C 1

WORKING WITH THE XTRADRIVE OPERATOR PANEL

The Operator Panel - highlighted on the left - can be used to set parameters, clear alarms, and check the status / setting for the XtraDrive functions. While these functions are more easily set or checked through the XtraWare software, it may be useful to check the driver manually. This section shows you how to use the panel. The following table identifies the keys and their function.

Key	Name	Function
	Up Arrow	 Press this key to set parameters or display the set values of parameters. Press the Up Arrow key to increase the set
	Down Arrow	 value Press the Down Arrow key to decrease the set value Press the Up and Down Arrow keys together to reset a servo alarm.
MODE/SET	MODE/SET	Press this key to select the Status Indicator mode, Auxiliary Function mode, Parameter Setting mode, or Monitor mode. See figure below.
DATA/	DATA/SHIFT	 Press this key to set each parameter or display the set values of parameters. This key is used for selecting the editing (flashing) digit or data setting

Basic Mode Selection

Use the MODE/SET key to cycle through the XtraDrives Modes.

Resetting Servo Alarms Using the Operator Panel

IMPORTANT

Press the **Up Arrow** ▲ AND **Down Arrow** ▼ keys together in Status Display Mode.

If an alarm is ON, reset the alarm AFTER eliminating the cause of the alarm. Refer to Appendix A 2.1, page A-5 "Troubleshooting..." for details.

The alarm can be reset with CN1-44 or /ALM-RST signal input. Refer to *Chapter* 7.6.1 "Using Servo Alarm and Alarm Code Outputs".

The servo alarm will be reset if the control power supply is turned OFF.

Operation in Parameter Setting Mode

Refer to Appendix C List of Parameters.

Functions can be selected or adjusted by setting parameters. The steps below show
how parameters can be checked and set from the operator panel. This may be useful
in diagnosing problems when a computer system is not available.

Changing Parameter Value Settings

Parameter value settings can be used to change parameter data. Check the permitted range of the parameters in *Appendix C "List of Parameters*", before changing the data.

The example below shows how to change parameter Pn507 (Brake Reference Output Speed Level) from 100 to 85.

1. Press the MODE/SET key to select the Parameter Setting mode.

IMPORTANT:

Note:

Press the DATA/SHIFT key for a maximum of one second to shift to a higher (left) digit. Continuing to press the DATA/SHIFT after the left most digit is reached will bring it back to the first digit on the right.

Parameter numbers that are

not defined are skipped during operator operations.

- 2. Press the DATA/SHIFT key to select the digit and the Up Arrow or Down Arrow keys to set the digit value. Digits are changed one at a time until the parameter value is set (Pn507 is selected in this example.)
- 3. Press the DATA/SHIFT key for a minimum of one second to display the current data for the parameter selected in step 2.

- 4. Press the Up Arrow ▲ or Down Arrow key ▼ to change the value as desired to "00085".
- 5. Press the DATA/SHIFT key for a minimum of one second to save the data. The display will flash.

6. Press the DATA/SHIFT key once more for a minimum of one second to display the parameter number again.

This has changed the setting of the parameter Pn507 from 100 to 85.

Repeat steps 2 to 6 to change the setting again.

PARAMETERS

Category	Parameter Number	Name	Unit	Setting Range	Default Settin <u>g</u>	Reference
	Pn000*	Function Selection Basic Switches	—	—	0x00D0	7.1.1, 7.4.1
ters	Pn001*	Function Selection Application Switches 1**	_	_	0000	7.1.2, 7.5.2
ו Parame	Pn002*	Function Selection Application Switches	_	_	0100	7.2.8, 7.2.9
Selection	Pn003	Function Selection Application Switches 3	_	_	0002	8.4
unction	Pn006	Function Selection Application Switches 3	—	_	0010	8.4
Pn007		Function Selection Application Switches 3	—	—	0012	8.4
	Pn100	Speed Loop Gain	Hz	1 to 2000	40	0 77
ers	Pn101	Speed Loop Integral Time Constant	0.01ms	15 to 51200	2000	8.2.7, 8.2.10
Jeti	Pn102	Position Loop Gain	s ⁻¹	1 to 2000	40	8.2.10
ain Parar	Pn103	Inertia Ratio	%	0 to 10000	0	8.2.6, 8.3.1, 8.3.5
Ŭ	Pn109	Feed-Forward (Speed control)	%	0 to 100	0	8.2.2
	Pn110*	Online Autotuning Switches	_	—	0010	8.3.6

The following list shows parameters and their settings.

NOTE: * After changing this parameter, cycle the main circuit and control power supplies to enable the new settings. ** The multi-turn limit is valid only when parameter Pn002.2 Absolute Encoder Usage is set to "2"/ The value will be processed in the range of '+32767 to -32768" for other settings even if the value is changed. There is no need to change the multi-turn limit except for in special cases. Be careful not to change the setting unless necessary.

Category	Parameter Number	Name	Unit	Setting Range	Default Setting	Reference
	Pn190*	Motor selection switch			0000	7.9
ers	Pn191*	Motor selection switch			0000	7.9
ramet	Pn192*	Pulses number of A quad B encoder (Low)	Pulses/rev	0-9999	2048	7.9
Pulses number of A c		Pulses number of A quad B encoder (High)	Pulse*100 00/Rev	0-419	0	7.9
Mot	Pn199*	Counts/Sc ale Pitch	1-256	1		
	Pn1A0 Global gain factor (Tightness)		%	0-500	60	8.3.3
Pn1A2 Speed feedback filte		Speed feedback filter	0.01ms	30-3200	40	8.3.5
ete	Pn1A4	Torque filter (low pass)	0.01ms	0-2500	20	8.3.5
Pn1A5 Torque filter (second order) Pn1A7 Integral mode switch Pn1A9 Integral feedback gain		Torque filter (second order)	0.1%	0-1000	0	8.3.5
				1121	8.3.8	
		Hz	0-500	40	8.3.5	
Gai	Pn1AA	Proportional feedback gain	Hz	0-500	40	8.3.3
	Pn1AB Supplementary proportional feedback gain		Hz	0-500	30	8.3.3

C 2

Category	Parameter Number	Name	Unit	Setting Range	Default Setting	Reference
	Pn1AC	Speed feedback gain	Hz	0-2000	Default 80 0 160 2000 300 2000 3 0 3 0004 2048 1 65535 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	8.3.3
	tegoryParameter NumberNameUnitSetting RangeP11ACSpeed feedback gainHz0-200Pn1AFFeed forward gain%0-200Pn1BSMaximum variable gain%0-200Pn1BSFeed forward compensationHz10-2000Pn1BCFilter on command acceleration0.01ms0-250Pn1BCReduction of vibrations due to system flexibility.Hz10-2000Pn1BDReduction of vibrations due to system flexibility.Hz10-2000Pn1BFIntegral offset averaging time Pn1C1ms0-250Pn1C1Integral switch advance1-15Pn200*Selection SwitchesPn200*Selection Switches1 to 65535Pn202*Electronic Gear Ratio (Numerator)1 to 65535Pn203*(Denominator)1 to 65535Pn216Command smoothing0.1ms0-65535Pn216Command smoothing0.1ms0-65535Pn216Command smoothing0.1ms0-65535Pn244*Work speed default (low)units' scale0-256Pn2A3*Work speed default (low)units' scale0-256Pn2A4*Work acceleration default 	0	8.3.3			
Position Linear Motor Parameters Communication Parameters Command Position Position Position Position Parameters Gain Parameters	Pn1B5	Maximum variable gain	%	100-1000	160	8.3.7
ters	Pn1BB	Feed forward compensation	Hz	10-2000	2000	8.3.4
ramet	Pn1BC	Filter on command acceleration	0.01ms	0-2500	300	8.3.4
ain Pa	Pn1BD	Reduction of vibrations due to system flexibility.	Hz	10-2000	2000	8.3.4
G	Pn1BF	Integral switch advance		1-15	3	8.3.8
	Pn1C0	Integral offset averaging time	ms	0-25	0	8.3.7
	Pn1C1	Integral switch advance	125µs	0-8	3	
	Pn200*	Position Control Reference Selection Switches	ne Unit gain Hz 0 n % 0 le gain % 11 npensation Hz 11 nd 0.01ms 0 ations due to Hz 11 dvance 1 eraging time ms 0 dvance 125µs 0 Reference - setting 2 rev 0 atio 1 atio 1 atio 1 atio 1 setting 2 rev 0 hing 0.1ms 0 uit (low) Speed units 0 alt (low) Speed units 0 user units - 0 n default Accelera- tion units 0 user units - 0 on units 0 0		0004	7.2.2
eters	Pn201*	PG Divider (rotary motor)	p/r	0 to 65535	2048	7.2.3
aram	Pn202*	Electronic Gear Ratio (Numerator)	_	1 to 65535	1	7.2.5
n F		Electronic Gear Ratio				
ositio	Pn203*	(Denominator) (See note 3).	—	1 to 65535	1	7.2.5
lear Motor Position Po arameter	Pn205*	Multi-Turn Limit Setting ²	rev	0 to 65535	65535	7.8.2
	Pn216	Command smoothing	0.1ms	0-65535	0	8.3.4
Linear Motor Position parameter	Pn281*	PG Divider	Counts / Scale Pitch	1-256	1	
ç	Pn2A2*	Work speed default (low)	Speed units	0-65535	0	7.10.1.2
nunicati	Pn2A3*	Work speed default (high)	Speed units* 65536	0-256	0	7.10.1.2
сотт	Pn2A4*	Work acceleration default (low)	Accelera- tion units	0-65535	0	7.10.1.2
Serial c	Pn2A5*	Work acceleration default (high)	Accelera- tion units* 65536	0-256	0	7.10.1.2
ition neters	Pn2A0*	Rotation base in user units (low)	-	0-65535	65535	-
Pos Parar	Pn2A1*	Rotation base in user units (high)	-	0-32767	32767	-
	Pn2A6*	Work jerk smoothing time default	μs	0-63999	0	7.10.1.2
	Pn2A8*	Quick stop deceleration (low)	Accelerati on units	0-65535	65535	7.10.1.2
	Pn2A9*	Quick stop deceleration (high)	Accelera- tion units* 65536	0-256	256	7.10.1.2
	Pn2B0*	Position units ratio numerator (low)		0-65535	1	7.10.1.1
lotor on ster	Pn2B1*	Position units ratio numerator (high)		0-16383	0	7.10.1.1
iear M Positic arame	Pn2B2*	Position units ratio denominator (low)		0-65535	1	7.10.1.1
bi F	Pn2B3*	Position units ratio denominator (high)		0-16383	0	7.10.1.1
	Pn2B4*	Speed units ratio numerator (low)		0-65535	1	7.10.1.1

Category	Parameter Number	Name	Unit	Setting Range	Default Setting	Reference
mand	Pn2B8*	Acceleration units ratio numerator (low)		0-65535	1	7.10.1.1
	Pn2B9*	Acceleration units ratio numerator (high)		0-16383	0	7.10.1.1
n con	Pn2BA*	Acceleration units ratio denominator (low)		0-65535	1	7.10.1.1
nicatio	Pn2BB*	Acceleration units ratio denominator (high)		0-16383	0	7.10.1.1
commur	Pn2C0	Motion end window	User position units	0-250	7	7.10.1.2
Serial	Pn2C1	Torque slope	0.1% of rated torque/ ms	1-24000	24000	7.10.2
	Pn2C4	Synchronize window for pulse train	User position units	0-250	7	Note*
	Pn2C6	Communication switch selection	Null	0-1	1	
	Pn2C7*	Home switch selection			0008	7.10.3
	Pn2C8	Auto tuning – Time between movements	ms	200-2000	400	7.10.5
	Pn2C9	Auto tuning – Speed of movement	% of maximum speed	0-100	50	7.10.5
	Pn2CA	Auto tuning – Acceleration time	ms	1-1000	50	7.10.5
	Pn2CB	Auto tuning – Plateau time of movement	ms	0-1000	50	7.10.5
	Pn2CC*	Auto start user program		0-99	0	5.10
	Pn2D0	Reserved			-	-
	Pn2D1*	2			0078	7.10.4
	Pn2D2*	Expand output signal selection 1			0000	7.10.4
	Pn300	Speed Reference Input Gain	0.01V/ rated speed	150 to 3000	600	7.2.1
Ś.	Pn301	Speed 1 (rotary motor)	rpm	0 to 10000	100	7.2.6
etei	Pn302	Speed 2	rpm	0 to 10000	200	7.2.6
ame	Pn303	Speed 3	rpm	0 to 10000	300	7.2.6
Par	Ph304	Jog Speed	rpm	0 to 10000	500	9.2.2
ed	Ph306	Soft Start Deceleration Time	ms	0 to 10000	0	8.2.2
Spe	Pn307	Speed Reference Filter Time	0.01ms	0 to 65535	40	
	Pn308	Speed Feedback Filter Time Constant	0.01ms	0 to 65535	0	_
, c	Pn380	Speed1	mm/s	0-5000	10	
Motc ed ieters	Pn381	Speed2	mm/s	0-5000	20	
near Spe aram	Pn382	Speed3	mm/s	0-5000	30	
	Pn383	Jog Speed	mm/s	0-5000	40	

Category	Parameter Number	Name	Unit	Setting Range	Default Setting	Reference
	Pn400	Torque Reference Input Gain	0.1V/rated torque	10 to 100	30	7.2.7
	Pn401	Torque Reference Filter Time Constant	0.01ms	0 to 65535	100	8.2.2
	Pn402	Forward Torque Limit	%	0 to 800	800	7.1.3
ers	Pn403	Reverse Torque Limit	%	0 to 800	800	7.1.3
ramet	Pn404	Forward External Torque Limit	%	0 to 800	100	7.1.3
lue Pa	Pn405	Reverse External Torque Limit	%	0 to 800	100	7.1.3
ord	Pn406	Emergency Stop Torque	%	0 to 800	800	7.1.2
Ĕ	Pn407	Speed Limit during Torque Control	rpm	0 to 10000	10000	7.2.7
	Pn408	Torque Function Switches	_	—	0000	8.2.9
	Pn409	Notch Filter Frequency	Hz	50 to 2000	2000	8.2.9
	Pn40A	Notch Filter width	Hz	70 to 1000	70	8.2.9
tor ers	Pn480	Speed limit during torque control	mm/s	0-5000	5000	
ar Mo orque amete	Pn483	Forward force limit	% of rated force	0-800	10	
Line T Para	Pn484	Reverse force limit	% of rated force	0-800	10	
	Pn500	Positioning Completed Width	ref. units	0 to 250	7	7.6.3
	Pn501	Zero Clamp Level	rpm	0 to 10000	10	7.5.3
	Pn502	Rotation Detection Level	rpm	1 to 10000	20	7.6.5
neters	Pn503	Speed Coincidence Signal Output Width	rpm	0 to 100	10	7.6.4
ara	Pn504	NEAR Signal Width	ref. units	1 to 250	7	7.6.8
ince P.	Pn505	Overflow Level	256 ref. units	1 to 32767	1024	8.2.1
Sequer	Pn506	Brake Reference Servo OFF Delay Time	10ms	0 to 50	0	7.5.4
	Pn507	Brake Reference Output Speed Level	rpm	0 to 10000	100	7.5.4

Category	Parameter Number	Name	Unit	Setting Range	Default Setting	Reference
		Timing for Brake Reference	10ms		50	
	Pn508	Output		10 to 100		7.5.4
		during Motor Operation				
	Pn509	Momentary Hold Time	ms	20 to 1000	20	7.6.8
ers	Pn50A*	Input Signal Selections 1			8881	7.3
amete	Pn50B*	Input Signal Selections 2			8888	7.3
	Pn50C*	Input Signal Selections 3	—		8888	7.3
Par	Pn50D*	Input Signal Selections 4			8888	7.3
e	Pn50E*	Output Signal Selections 1		_	0000	7.4
len	Pn50F*	Output Signal Selections 2	—	—	0000	7.4
hba	Pn510*	Output Signal Selections 3	_	—	0000	7.4
× ×	Pn511	Reserved parameter (Do not			8888	
		change).				
	Pn512*	Reserved parameter (Do not	_	_	0000	_
		change.)				
L. 80	Pn580	Zero clamp level	Range Setting 10ms 10 to 100 50 ms 20 to 1000 20 — — 8881 — — 8888 — — 8888 — — 8888 — — 8888 — — 8888 — — 8888 — — 8888 — — 0000 — — 0000 — — 0000 pt — — 0t — — 0000 mm/s 0-5000 10 10 mm/s 0-100 10 10 eed mm/s 0-5000 100 10W 0 to capacity 5 0 0 ot — 0 to capacity 5 0			
nea otor Jenc met	Pn581	Motion detection level	mm/s	1-5000	20	
Lii Sequ Para	Pn582	Speed coincidence signal output width	mm/s	0-100	10	
	Pn583	Brake reference output speed level	mm/s	0-5000	100	
	Decoo	Regenerative Resistor	101/	0 to	0	7.7
her ra- ters	F11000	Capacity ⁴	1000	capacity ⁵		
Del Dal	Pn601	Reserved parameter (Do not		0 to	0	
	1001	change.)		capacity ⁵		

Footnotes

* After changing this parameter, cycle the main circuit and control power supplies to enable the new settings.

² The multi-turn limit is valid only when parameter Pn002.2 Absolute Encoder Usage is set to "2". The value will be processed in the range of "+32767 to -32768" for other settings even if the value is changed. There is no need to change the multi-turn limit except for in special cases. Be careful not to change the setting unless necessary.

³ The setting of parameter Pn111 is valid only when parameter Pn110.1 is set to 0. ⁴ Normally set to "0". When using an external regenerative resistor, set the capacity (W) of the regenerative resistor.

⁵ The upper limit is the maximum output capacity (W) of the servo amplifier.

Note* Refer to XtraWare User Manual

C 3

D	W.	ľľ	C	ŧ	£,

a

Parameter	Digit Place	Name	Setting	Description	Default Setting	
		Divertien	0	Sets CCW as forward direction.		
	0	Selection	1	Sets CW as forward direction (reverse rotation mode).	0	
			0	Speed control (analog reference).		
			1	Yaskawa OB (Yaskawa Position Control)		
			2	Torque control (analog reference).		
				Internal set speed control (contact		
ches			3	reference).		
				Internal set speed control (contact		
			4	reference)/Speed control (analog		
wit				reference).		
ic S				Internal set speed control (contact		
0 3as			6	reference)/Torque control (analog		
n E	1	Control Method		reference).	р	
ctic Br	'	Selection		Position control (pulse train		
e			8	reference)/Torque control		
n S				(analog reference).		
tio			0	Torque control (analog reference)/Speed		
nnc			9	control (analog reference).		
Ē			Δ	Speed control (analog reference)/Zero		
				clamp.		
			В	Position control (pulse train		
				reference)/Position control (Inhibit)		
			<u> </u>	Position control (pulse train)		
	2			Serial communication command	0	
	2	Axis Address		Sets servo ampliner axis address.	0	
	0	Servo OFF or Alarm Stop Mode	0	Stops the motor by applying dynamic brake (DB).	0	
			1	Stops the motor by applying dynamic brake (DB) and then releases DB.	0	
			2	Makes the motor coast to a stop state without using the dynamic brake (DB).		
			0	Same setting as Pn001.0 (Stops the motor		
ş				by applying DB or by coasting.)		
che				Sets the torque of Pn406 to the maximum		
wit	1	Overtravel Stop Mode		value, decelerates the motor to a stop, and	0	
n S		Stop Mode		Cots the torque of Pp/06 to the maximum		
atio			2	value decelerates the motor to a stop, and		
lic:			-	then sets it to coasting state.		
App App				Not applicable to DC power input: Input AC		
Pr on /			0	power supply through L1, L2, and (L3)		
ctic	2	Input Selection		terminals.	0	
<u>e</u>		input selection	1	Applicable to DC power input: Input DC		
u S				power supply through (+)1 and (-) terminals.		
unctic			0	ALO1, ALO2, and ALO3 output only alarm codes.		
Щ				ALO1, ALO2, and ALO3 output both alarm		
	_	Warning Code		codes and warning codes. While warning		
	3	Output	1	codes are output, ALM signal output	0	
		Selection		remains ON (normal state).		
				Uses absolute encoder as an absolute		
			2	encoder.		
				uses multi-turn limit.		

The following list shows the switches and their default settings.
Parameter	Digit Place	Name	Setting	Description	Default Setting	
		Speed Control Option	0 1	None. Uses T-REF as an external torque limit input		
itches	0	(T-REF Terminal Allocation)	2	Uses T-REF as a torque feed-forward input. Uses T-REF as an external torque limit	0	
on Sw		Torque Control	3	input when P-CL and N-CL are ON. None.		
Pn002 in Applicatic	1	Option (V-REF Terminal Allocation)	1	Uses V-REF as an external speed limit input.	0	
electio			0	Uses absolute encoder as an absolute encoder.		
tion Se	2	Absolute Encoder Usage	1	Uses absolute encoder as an incremental encoder.	0	
Fund			2	Uses absolute encoder as an absolute encoder. Uses multi-turn limit.		
	3	Not used.	0		0	
			0	Motor speed: 1V/1000rpm.	2	
S		Analog Monitor 1 Torque Reference Monitor	1	Speed reference: 1V/1000rpm.	_	
che l	0		2	Torque reference: 1V/100%.		
and 2003 Application Switc			3	Position error: 0.05V/1 reference units.		
			4	Position error: 0.05V/100 reference units.		
			5	Reference pulse frequency (converted to rpm): 1V/1000rpm.	0	
d uo			6	Motor speed x 4: 1V/250rpm.		
unction Selecti	Analog Monitor 2 1 Speed Reference Monitor		7 0 to 7	Same as Pn003.0 (see above).		
	2	Not used.			0	
	3	Not used.			0	
				Servo position error: 1V/10 encoder counts		
				Dervo position error: TV/5 User Units		
		Analog monitor	3	Target speed after applying command		
les	0	1.	4	Torque reference: 10V/Max Torque.	0	
itch			5	Motor speed: 1V/500 rpm.		
2n006 ation Swi			6	Target acceleration after applying command smoothing: 10V/max acceleration allowed.		
Appli	1	Analog monitor 1-selection of	0	Pn003.0 used for analog monitor 1.	0	
Gain		source parameter	1	Pn006.0 used for analog monitor 1.		
	2	Analog monitor 1- magnification of signal.	0-4	0: x1, 1: x10, 2: x100 3: x1/10, 4: x1/100	0	
	3	Not used.	0		0	

C12 XtraDrive Users Guide

Parameter	Digit Place	Name	Setting	Description	Default Setting	
			0	Servo position error: 1V/10 encoder counts		
			1	Servo position error: 1V/5 user units		
			2	Target speed 1V/500 rpm.		
			0	Target speed after applying command		
0	0	Analog monitor	3	smoothing: 1V/500 rpm	0	
hệ	0	2.	4	Torque reference: 10V/Max Torque.	0	
lito			5	Motor speed: 1V/500 rpm.		
S S				Target acceleration after applying		
20 U			6	command smoothing: 10V/max acceleration		
atic				allowed.		
L L		Analog monitor	0	Pn003.1 used for analog monitor 2.		
App	1	2 -selection of			0	
d u	'	source	1	Pn007.0 used for analog monitor 2.	0	
Gai		parameter				
		Analog monitor				
	2	2 -	0-4	0: x1, 1: x10, 2: x100	0	
		magnification of		3: x1/10, 4: x1/100	0	
		signal.				
	3	Not used.	0		0	
55	0	Communication	0	With commutation sensors	1	
otc		sensor switch	1	Without commutation sensors		
itcl a	1	Communication	0	UVW	1	
Pn Sw	Ľ.	sensor order	1	UWV	1	
i i c	2	Reserved			0	
0	3	Reserved			0	
		Online Auto-	0	Tunes only at the beginning of operation.		
	0	0 tuning Method	1	Always tunes.	0	
bu			2	Does not perform autotuning.		
iur		Speed Feed-		Freeblad		
Pn110 ne Autott Switches	1	back	0	Enabled.	1	
		Compensation	1	Dischlad	·	
		Selection	1			
nlir		Friction Compensation	0	Friction compensation: Disabled.	_	
0	2		1	Friction compensation: Small.	0	
		Selection	2	Friction compensation: Large.		
	3	Reserved	-	Reserved parameter (Do not change).	0	
			0	Yaskawa A quad B model SGM		
	0	Motor model	1	Yaskawa A quad B model SGMP	0	
	_		2	Non Yaskawa rotary motor	-	
			3	Non Yaskawa linear motor		
uo	1	Encodor tupo	0	Incremental A quad B encoder	0	
ecti les	'		1	Yaskawa absolute A guad B encoder	0	
sel sel			0	Yaskawa serial encoder		
Pr			1	A guad B encoder		
Jot		Encoder		A guad B encoder with commutation		
2	2	selection	2	sensors (U.V.W)	0	
				A guad B encoder with commutation		
			3	sensors (/U./V./W)		
			0	C phase signal used		
	3	C- phase mask	1	C phase signal mask	0	
			0	Not defined		
L nc se	0	Motor phase	1	UVW	0	
ctic ctic		order	2	UWV	2	
wit Wit			_			
0 00	1-3	Not used	0		0	
				Disable clear integral function		
L L S			0	(refer to 8 3 9)		
Stic A7	0	Integral mode		Enable clear integral function	1	
Pn1 Mo Mo vitc			1	(refer to 8 3 9)		
N N N N N N N N N N N N N N N N N N N	10	Notucad	0		^	
L	1-3	INOL USED	U		U	

Parameter	Digit Place	Name	Setting	Description	Default Setting			
			0	Sign + pulse, positive logic.				
			1	CW + CCW, positive logic.	7			
			2	A phase + B phase $(x1)$, positive logic.	1			
			3	A phase + B phase (x2), positive logic.				
		Reference	4	A phase + B phase (x4), positive logic.	7			
	0	Pulse Form	5	Sign + pulse, negative logic.	0			
es			6	CW + CCW, negative logic.				
tch			7	A phase + B phase (x1), negative logic.				
. Mi			8	A phase + B phase (x2), negative logic.				
u o			9	A phase + B phase (x4), negative logic.				
ctic				Clears error counter when the signal goes				
lee			0	high.				
s Sé			1	Clears error counter at the rising edge of				
120 Ice	1	Error Counter		the signal.				
Pr		Clear Signal	2	Clears error counter when the signal goes				
efe		Form	2	low.				
<u> </u>			2	Clears error counter at the falling edge of				
tro			3	the signal.				
l lo			0	Clears error counter at the base block.				
u U	2	Clear Operation		Does not clear error counter. (Possible to				
itio			1	clear error				
os				counter only with CLR signal).	0			
			2	Clears error counter when an alarm occurs.				
			3	Clear signal ignore				
			0	Reference input filter for line driver signals.				
	3	Filter Selection	1	Reference input filter for open collector	0			
				signals.				
_	0	Check Sum	0	Doesn't use check sum	1			
ior			1	Use check sum				
6 cat	1	Comm. Def.*	0	Default setting (1 start, 7 data, Even-parity)	0			
uni vito	2							
Pr Tr VS	3	Not used						
L LO			1	Normally open				
0			2	Home failure				
_		Oscillation	0	OCA is not activate				
tch a	0	Canceling	1					
D14 D14		Mode		OCA is active	0			
Pn2[Oscilla Cance lode S	1							
	2	Not used.	_	<u> </u>				
2	3							
	_	Notch Filter	0	Disabled.				
es es	0	Selection	1	Uses a notch filter for torque reference.	7			
cti du	1			· · · · · · · · · · · · · · · ·	0			
Toi Toi Wit	2	Not used.	_	<u> </u>				
	3	1						
L	i							

*Communication Definitions

C 4 INPUT SIGNAL SELECTIONS

Parameter	Digit Place	Name	Setting	Description	Default Setting	
	0	Input Signal Allocation Mode	0	Sets the input signal allocation for the sequence to the same one as for the Yaskawa special servo amplifier.	0	
			1	Possible to freely allocate the input signals.		
			0	Inputs from the SI0 (CN1-40) input terminal.		
			1	Inputs from the SI1 (CN1-41) input terminal.		
			2	Inputs from the SI2 (CN1-42) input terminal.		
			3	Inputs from the SI3 (CN1-43) input terminal.		
			4	Inputs from the SI4 (CN1-44) input terminal.		
			5	Inputs from the SI5 (CN1-45) input terminal.		
5.504			6	Inputs from the SI6 (CN1-46) input terminal.		
Pn50A 1	1	/S-ON Signal Mapping (Servo ON when low.)	1	Sets signal ON.	0: SI0	
			8	Sets signal OFF.		
			9	Inputs the reverse signal from the SI0 (CN1-40) input terminal.		
			A	Inputs the reverse signal from the SI1 (CN1-41) input terminal.		
			В	Inputs the reverse signal from the SI2 (CN1-42) input terminal.		
			С	Inputs the reverse signal from the SI3 (CN1-43) input terminal.		
			D	Input the reverse signals from the SI4 (CN1-44) input terminal.		
			E	Inputs the reverse signal from the SI5 (CN1-45) input terminal.		
			F	Inputs the reverse signal from the SI6 (CN1-46) input terminal.		
		CN1-41 Signal				
	2	Mapping (P-control when low.)	0 to F	Same as above.	1: SI1	
	3	P-OT Signal Mapping (Overtravel when high.)	0 to F	Same as above.	2: SI2	
	0	N-OT Signal Mapping (Overtravel when high.)	0 to F	Same as above.	8: OFF	
	1	/ALM-RST Signal Mapping (Alarm reset when low.)	0 to F	Same as above.	8: OFF	
	2	CN1-45 Signal Mapping (Torque control when low.)	0 to F	Same as above.	8: OFF	
	3	CN1-46 Signal Mapping (Torque control when low.)	0 to 8	Same as above.	8: OFF	

Parameter	Digit Place	Name	Setting	Description	Default Setting
	0	/SPD-D Signal Mapping (Internal Set Speed Selection)	0 to F	Same as above.	8: OFF
Pn50C	1	/SPD-A Signal Mapping (Internal Set Speed Selection)	0 to F	Same as above.	8: OFF
Ph50C	2	/SPD-B Signal Mapping (Internal Set Speed Selection)	0 to F	Same as above.	8: OFF
	3	/C-SEL Signal Mapping (Control Mode Switching)	0 to F	Same as above.	8: OFF
Pn50D	0	/ZCLAMP Signal Mapping (Zero Clamping)	0 to F	Same as above.	8: OFF
	1	/INHIBIT Signal Mapping (Disabling Reference Pulse)	0 to F	Same as above.	8: OFF
	2	/G-SEL Signal Mapping (Gain Switching)	0 to F	Same as above.	8: OFF
	3	(Reserved)	0 to F	Same as above.	8: OFF

C 4.1 HOME SWITCHES

Parameter	Digit Place	Name	Setting	Description	Default Setting
Pn2C7	0	Home switch input		Same as Pn50A.1	8
	1	Reserved			0
	2	Reserved			0
	3	Reserved			0

C 4.2 EXTENDED INPUT SIGNAL SELECTION SWITCHES

These inputs are used in the user program.

Pn2D1 -	0	Emergency input	0	Same as Pn50A.1	8: ON
	1	New Move Enable	0-F	Same as Pn50A.1	7
	2	Reserved		-	0
	3	Reserved			0

C 5

OUTPUT SIGNAL SELECTIONS

The following list shows output signal selections and their default settings.

D.1. Output Signal Selections

The following list shows output signal selections and their default settings.

Parameter	Digit Place	Name	Setting	Description	Default Setting	
			0	Disabled.		
			1	1 Outputs from the SO1 (CN1-25, 26) output terminal.		
	0	Mapping	2	Outputs from the SO2 (CN1-27, 28) output terminal.	0:Disabled	
Pn50E			3	Outputs from the SO3 (CN1-29, 30) output terminal.		
	1	/V-CMP Signal Mapping	0 to 3	Same as above	0:Disabled	
	2	/TGON Signal 0 to 3 Same as above		Same as above	0:Disabled	
	3	/S-RDY Signal Mapping	0 to 3	Same as above	0:Disabled	
	0	/CLT Signal Mapping	0 to 3	Same as above		
Pp50E	1	/VLT Signal Mapping	0 to 3	Same as above		
FIISOF	2	/BK Signal 0 to 3 Mapping		Same as above	0: Not	
	3	/WARN Signal Mapping	0 to 3	Same as above	useu	
	0	/NEAR Signal Mapping	0 to 3	Same as above		
Pn510	1	Reserved	0 to 3	Same as above		
	2	Not used.	0		0	
	3	Not used.	0	_	0	

Note: 1. When more than one signal is allocated to the same output circuit, data is output using OR logic.
2. Depending on the control mode, undetected signals are treated as OFF. For example, in the speed control

mode, the /COIN signal is treated as OFF.

3. Types of /WARN signals: Overload and regenerative overload.

C 5.1 EXTENDED OUTPUT SIGNAL SELECTIONS

			0	Disabled.	
Pn2D2		/COIN Signal Mapping	1	Outputs from the SO1 (CN1-25, 26) output terminal.	0:disable
	0		2	Outputs from the SO2 (CN1-27, 28) output terminal.	
			3	Outputs from the SO3 (CN1-29, 30) output terminal.	
	1	Not used.	_	_	0
	2	Not used.	_		0
	3	Not used.	_	_	0

These outputs are used in the user program.

AUXILIARY FUNCTIONS

The following list shows the available	auxiliary functions
--	---------------------

Parameter	Function
Fn000	Alarm traceback data display.
Fn001	Rigidity setting for online autotuning.
Fn002	JOG mode operation.
Fn003	Zero-point search mode.
Fn004	(Reserved parameter).
Fn005	Parameter settings initialization.
Fn006	Alarm traceback data clear.
Fn007	Writing to EEPROM inertia ratio data obtained from online autotuning.
Fn008	Absolute encoder multi-turn reset and encoder alarm reset.
Fn009	Automatic tuning of analog (speed, torque) reference offset.
Fn00A	Manual adjustment of speed reference offset.
Fn00B	Manual adjustment of torque reference offset.
Fn00C	Manual zero-adjustment of analog monitor output.
Fn00D	Manual adjustment of analog monitor output gain.
Fn00E	Automatic adjustment of motor current detection signal offset.
Fn00F	Manual adjustment of motor current detection signal offset.
Fn010	Write protect setting (protects parameters from being changed).
Fn011	Motor model display.
Fn012	Software version display.
Ep013	Multi-Turn Limit Setting: Change when a Multi-Turn Limit Disagreement Alarm
11015	(A.CC) occurs.
Fn014	Clear Option Unit Detection Alarm (A.E7).

Ι

C 7

Monitor Modes

The following list shows monitor modes available.

Parameter	Content of Display	Unit	Remarks
Un000	Actual motor speed	rpm	_
Un001	Input speed reference	rpm	—
Un002	Internal torque reference	%	Value for rated torque
Un003	Rotation angle 1	pulse	Number of pulses from the origin
Un004	Rotation angle 2	degree	Angle from the origin (electrical angle)
Un005	Input signal monitor		On/off status of inputs
Un006	Output signal monitor	—	On/off status of outputs
Un007	Input reference pulse speed	rpm	—
Un008*	Error counter value	reference units	Amount of position error
Un009	Accumulated load rate	%	Value for the rated torque as 100% Displays effective torque in 10s cycle.
Un00A	Regenerative load rate	%	Value for the processable regenerative power as 100% Displays effective torque in 10s cycle.
Un00B	Power consumed by DB resistance	%	Value for the processable power when dynamic brake is applied as 100% Displays effective torque in 10s cycle.
Un00C	Input reference pulse counter	_	Displayed in hexadecimal.
Un00D	Feedback pulse counter		Displayed in hexadecimal.

*Not used in serial communication command.

C18 XtraDrive Users Guide

Page is intentionally left blank - for you to fill with your own notes.

HOST CONTROLLER CONNECTION EXAMPLES

D2 XtraDrive Users Guide

Page is intentionally left blank - for you to fill with your own notes.

D1 CONNECTING THE GL-SERIES MC20 MOTION MODULE

The following diagram shows an example of connecting to the GL-series MC20 Motion Module. In this example, the servo amplifier is used in Speed Control Mode.

*1. These pin numbers are the same for SV2 to SV4.

*2. ‡P indicates twisted-pair wires.

D 2 CONNECTING THE CP-9200SH SERVO CONTROLLER MODULE (SVA)

The following diagram shows an example of connecting to the CP-9200SH servo controller Module (SVA). In this example, the servo amplifier is used in Speed Control Mode.

***‡**P indicates twisted-pair wires.

D 3 CONNECTING THE GL-SERIES B2813 POSITIONING MODULE

The following diagram shows an example of connecting to the GL-series B2813 Positioning Module. In this example, the servo amplifier is used in Position Control Mode.

- *1. The ALM signal is output for approximately two seconds when the power is turned ON. Take this into consideration when designing the power ON sequence. The ALM signal actuates the alarm detection relay 1Ry to stop main circuit power supply to the XtraDrive.
- *2. Set parameter Pn200.0 to "1".
- *3. Connect the shield wire to the connector shell.
- *4. P indicates twisted pair wires.

D 4 CONNECTING OMRON'S C500-NC222 POSITION CONTROL UNIT

The following diagram shows an example of connecting to an OMRON C500-NC222 Position Control Unit. In this example, the servo amplifier is used in Speed Control Mode.

- *1. The ALM signal is output for approximately two seconds when the power is turned ON. Take this into consideration when designing the power ON sequence. The ALM signal actuates the alarm detection relay 1Ry to stop main circuit power supply to the XtraDrive.
- *2. Connect the shield wire of the I/O cable to the connector shell.
- *3. P indicates twisted pair wires.
- **NOTE:** Only signals applicable to OMRON's C500NC222 Position Control Unit and YET's XtraDrive are shown here.

D 5 CONNECTING OMRON'S C500-NC112 POSITION CONTROL UNIT

The following diagram shows an example of connecting to the OMRON C500-NC112 Position Control Unit. In this example, the servo amplifier is used in the position control mode.

- *1. The ALM signal is output for approximately two seconds when the power is turned ON. Take this into consideration when designing the power ON sequence. The ALM signal actuates the alarm detection relay 1Ry to stop main circuit power supply to XtraDrive.
- *2. Set parameter Pn200.0 to "1".
- *3. Manufactured by Yaskawa Controls Co.
- **NOTE:** Only signals applicable to OMRON's C500NC112 Position Control Unit and YET's XtraDrive are shown here.

D 6 CONNECTING MITSUBISHI'S AD72 POSITIONING UNIT

The following diagram shows an example of connecting to the MITSUBISHI AD72 Positioning Unit. In this example, the servo amplifier is used in Speed Control Mode.

- *1. The ALM signal is output for approximately two seconds when the power is turned ON. Take this into consideration when designing the power ON sequence. The ALM signal actuates the alarm detection relay 1Ry to stop main circuit power supply to XtraDrive.
- *2. Pin numbers are the same both for X-axis and Y-axis.
- *3. Connect the connector wire of the cable to the connector shell.
- *4. P indicates twisted pair wires.

NOTE: Only signals applicable to Mitsubishi's AD72 Positioning Unit and YET's XtraDrive are shown here.

D7 CONNECTING MITSUBISHI'S AD75 POSITIONING UNIT

The following diagram shows an example of connecting to the MITSUBISHI AD75 Positioning Unit. In this example, the servo amplifier is used in Position Control Mode.

- * The ALM signal is output for approximately two seconds when the power is turned ON. Take this into consider action when designing the power ON sequence. The ALM signal actuates the alarm detection relay 1Ry to stop main circuit power supply to XtraDrive.
- **NOTE:** Only signals applicable to MITSUBISHI's AD75 Positioning Unit and YET's XtraDrive are shown here.

D10 XtraDrive Users Guide

Page is intentionally left blank - for you to fill with your own notes.

Specifications for Peripheral Devices

E2 XtraDrive Users Guide

Page is intentionally left blank - for you to fill with your own notes.

EXTERNAL REGENERATIVE RESISTORS

Regenerative resistors can be externally mounted onto all XtraDrive models. Mount a regenerative resistor externally if regenerative energy exceeds the capacity of the XtraDrive.

If a regenerative resistor is to be mounted externally, the jumper between B2 and B3 terminals of XtraDrive must be removed.

Applicable Servo Amplifiers		BUILT-IN SPECIFICATIONS		REGENERATIVE	MINIMUM	
		R esistance (Ω)	CAPACITY (W)	Power Processed by Built-in * (W)	Allowable Resistance (Ω)	Note:
Single-phase 100V	XD-P3-L* to -02-L*				40	regenerative power (average
Single-phase 200V	XD-P3-M* to -04-M*		_	_		value) that can be processed
	XD-08-M*	50	60	12	40	is rated at 20% of the
	XD-15-M*	25	140	28		capacity of
	XD-10-M*	50	60	12	40	amplifier's
Three-phase 400V	XD-20-M*	25	140	28	12	built-in regenerative.
	XD-30-M*	12.5	140	28	12	Available as built-in
Three-phase 400V	XD-05-T* to -15-T*	108	70	14	73	on modules
	XD-20-T* to -30-T*	45	140	28	44	15, 20, 30, 50
	XD-50-T*	32	180	36	28	

Specifications for XtraDrive Regenerative Resistors

Examples of External XtraDrive Regenerative Resistors

MANUFACTURER MODEL	Specifications	MANUFACTURER
RH120	70W, 1 to 100 Ω	
RH150	90W, 1 to 100 Ω	
RH220	120W, 1 to 100 Ω	Iwaki Wireless Research
RH300C	200W, 1 to 10 k Ω	Institute
RH500	300W, 10 to 30 Ω	

* Set the resistance of the regenerative resistor to higher than the minimum allowable resistance of the XtraDrive.

Product Name Configurations

<u>RH120 (N)</u>	<u>10 Ω</u>	J
1	2	3

<u>1</u> Model	N indicates non-inductive windings
2 Resistance	-
	K: ±10%
<u>3</u> Resistor Tolerance	J: ±5%
	H: ±3%

E 1

Specifications

Resistor Tolerance	K: ±10%, J: ±5%, H: ±3%
Resistor Temperature Characteristics	± 400 PPM/°C (Up to 20 Ω), ± 260 PPM/°C (20 Ω or higher)
Withstand Voltage	ΔR at 200 VAC/1min: $\pm (0.1\% + 0.05 \Omega)$
Insulation Resistance	500 VDC, 20 M Ω or higher
Short-term Overload	ΔR with 10 times the rated power applied for 5 s: $\pm (2\% + 0.05 \Omega)$
Service Life	ΔR in 1000 hours at rated 90 minutes ON and 30 minutes OFF: $\pm(5\% + 0.05 \Omega)$
Inflammability	Fire does not occur with 10 times the rated power applied for 1 min.
Ambient Temperature Range	-25 to 150 °C

Dimensional Drawings

DC REACTORS FOR POWER SUPPLIES DESIGNED FOR MINIMUM HARMONICS

If necessary for power supplies designed for minimum harmonics, connect a DC reactor between the (+)1 and (+)2 terminals of XtraDrive main circuits. Select a DC reactor that matches the ratings of the XtraDrive from among those listed in table.

Applicable XtraDrive		REACTOR S	REACTOR	
		IMPEDANCE (MH)	RATED CURRENT (A)	MODEL
	XD-01	40.0	.85	X5071
Single-phase	XD-02	20.0	1.65	X5070
200V	XD-04	10.0	3.3	X5069
	XD-08	4.0	5.3	X5079
Three-phase 200V	XD-10	2.0	4.8	X5061
	XD-20	1.5	8.8	X5060
	XD-30	1.0	14.0	X5059
	XD-05	4.7	1.5	X5074
Three-phase 400V	XD-10	2.2	4.5	N.CO.7.C
	XD-15	3.3	4.3	A3075
	XD-20	2.2	8.6	N5076
	XD-30	2.2		X5076

DC Reactor Specifications

REACTOR				DIMEN	ISIONS MN	1 (IN)				Approximate
MODEL	Α	В	С	D	Е	F	G	$\Phi \mathbf{H}$	Φ Ι	MASS KG (LB)
V5071	35	52	80	95	30	40	45	4	4.3	0.5
A30/1	(1.38)	(2.05)	(3.15)	(3.74)	(1.18)	(1.57)	(1.77)	(0.16)	(0.17)	(1.102)
X5070	40	59	100	120	35	45	50	4	4.3	0.8
10010	(1.57)	(2.32)	(3.94)	(4.72)	(1.38)	(1.77)	(1.97)	(0.16)	(0.17)	(1.764)
X5069	40	59	105	125	45	60	65	4	5.3	1.0
	(1.57)	(2.32)	(4.13)	(4.92)	(1.77)	(2.36)	(2.56)	(0.16)	(0.21)	(2.205)
X5079	50	74	125	140	35	45	60	5	4.3	1.2
	(1.97)	(2.91)	(4.92)	(5.51)	(1.38)	(1.77)	(2.36)	(0.20)	(0.17)	(2.65)
X5078	50	/4	125	155	60	/0	80	5	5.5	2.0
	(1.97)	(2.91)	(4.92)	(6.1)	(2.36)	(2.76)	(3.15)	(0.20)	(0.21)	(4.41)
X5061	(1.29)	(2.5)	(2, 15)	95 (2.74)	(1.20)	(1.77)	(1.07)	4	(0.17)	(1,102)
	(1.38)	(2.5)	(3.15) 105	(3.74) 125	(1.38) 45	(1.77)	65	(0.16)	(0.17)	(1.102) 1.0
X5060	(1.57)	(2,32)	(4.13)	(4.92)	(1.77)	(2.36)	(2.56)	(0.16)	(0.17)	(2 205)
	50	74	125	155	60	$\frac{(2.30)}{70}$	80	5	5.3	1.1
X5059	(1.97)	(2.91)	(4.92)	(6.1)	(2.36)	(2.76)	(3.15)	(0.20)	(0.21)	(2.43)
	30	47	70	85	28	38	45	4	4.3	0.3
X5074	(1.18)	(1.85)	(2.76)	(3.35)	(1.10)	(1.50)	(1.77)	(0.16)	(0.17)	(0.661)
372075	40	59	100	120	40	50	55	4	4.3	0.9
X50/5	(1.57)	(2.32)	(3.94)	(4.72)	(1.57)	(1.97)	(2.17)	(0.16)	(0.17)	(1.984)

Dimensional Drawings

E 3

Brake power supplies are available for 200V inputs for servo motors with brakes. • 200 V input: LPSE-2H01

Dimensional Drawings

Specifications

- Lead wire length: About 500 mm (19.69 in) each
- Max. ambient temperature: 60 C
- Lead wires: Color coded

AC INPUT	BRAKE END
Yellow/White	Red/Black

Internal Circuit

The following shows internal circuit for brake power supply. While it is possible to switch either the AC or DC side of the power supplies, it is normally safer to switch

* When switching on the DC side, install a surge suppressor near the brake coil to prevent damage to the coil from voltage surges due to DC-side switching.

E7

E 4 SURGE SUPPRESSOR

Recommended to install surge suppressor that absorbs surge voltage generated when the magnetic coil is OFF. This prevents faulty operation or damage to electronic circuits near the magnetic contactors or switches.

E 5 MAGNETIC CONTACTOR

A magnetic contactor turns ON and OFF the servo. Be sure to attach a surge suppressor to the excitation coil of the magnetic contactor.

Select a magnetic contactor based on the current capacity of the XtraDrive. For multiply servo systems, select a contactor based on total current capacity.

E 6 VARIABLE RESISTOR FOR SPEED SETTING

A variable resistor provides speed references by applying speed reference voltage from the external power supply across CN1 pins 1 and 5 as well as 1 and 6. n Connection to an External Power Supply

Connection to an External Power Supply

E 7 CN1 I/O SIGNAL CONNECTOR

CN1 connector is required to connect the host controller to XtraDrive. It comprised of a connector and a case.

	CONNECTOR PARTS		
	CONNECTOR	CASE	
YET P/N OF CONNECTOR	Model	Model	
4J4003	10150-3000VE *	10350-52A0-008 *	

* Manufactured by Sumitomo 3M Co.

CONNECTING PULSE A/B ENCODER WITHOUT C PULSE (INDEX PULSE)

XTRADRIVE SIDE PIN NUMBER (20-pin connector)	SIGNAL NAME	WIRE COLOR	Remarks
1,2,3	PG GND	Black	
156	PG+5V	Red	Twisted
4,5,0	10 +3 v	White	Pair
14	PC	Green	Twisted
15	/PC	White	Pair
16	PA	Blue	Twisted
17	/PA	White	Pair
18	PB	Yellow	Twisted
19	/PB	White	Pair
FG	Connector Shield	Yellow/Green	

In case of using an A/B encoder without C pulse:

- Connect signal PC (Green Wire) directly to +5V terminal (together with Red-White PG +5V wires)
- Connect signal /PC (White wire from Green-White pair) directly to GND terminal (together with Black wire)

E 9 Absolute Encoder Battery

When the power supply of an absolute encoder is OFF, a data backup battery is required. Customers can install one of the absolute encoder batteries shown below.

Battery Installed at the Absolute Encoder Cable End

Model: ER6V (Lithium battery by Toshiba Battery Co. Ltd) 3.6V 2000 mAh YET P/N: 704004

Battery Installed at the XtraDrive End (CN1 Connector)

Connect a lithium battery with following characteristics to XtraDrive using CN1 connector: 2000 mAh

3.6V

CONTACT NO.	CONTACT NAME
21	Battery +
22	Battery –

[‡]P represents twisted pair.

E 10.1 RS-232 COMMUNICATION CABLE

Cable Configuration

- D-Sub 9-pin connector
- Plug: 77SDE-09S
- Shell: 17JE-09-H1C

Amphenol Ltd.

Half-pitch 14-pin connector Plug: 10114-3000VE Shell: 10314-52A0-008 Sumitomo 3M Ltd.

Communication Specifications

The communication specifications are as follows:

Baud Rate:
 Number of Bits:
 Number of Bits:
 Start: 1 bit
 Data: 7 bits
 Stop: 1 bit
 Parity: 1 bit (even)
 Synchronization Method:
 Start-Stop
 XON/XOFF Control:
 None
 Shift Control:
 None
 Communication Method:
 Semi-duplex

Communication Circuits

• With the Standard RS-232C Port Maximum cable length is 2 m (6.56 ft). In this case, the connection circuits are follows:

• With RS-422A Port XtraDrive can also be connected to an RS-422A port.

In this case, the connection circuit is as follows:

- Transmission Distance: 30 m (98.4 ft)
- Transmission System: RS-422A

XtraDrive end (CN3)

RS-422A port (PC end)

• Terminal Arrangement at XtraDrive End

Connector Pin Numbers and Signal Names

PIN NO	SIGNAL NAME	SIGNAL CIRCUIT NAME	SIGNAL
1 11 110.	DIGNAL INAME	DIGNAL CIRCUIT IVAME	DIRECTION
1	TXD	Transmit data (not inverted)	$P^* - S^{*2}$
2	/TXD	Transmit data (inverted)	P← S
3	RXD	Receive data (not inverted)	$P \rightarrow S$
4	/RXD	Receive data (inverted)	$P \rightarrow S$
5	OPH	Reserved pin	-
6	/RXD	Short pins 6 and 7 to insert a 2	20 Ω terminating
7	RT	resistance between RXD a	and /RXD*4
8	TXD	Transmit data (not inverted)	P⊢ S
9	/TXD	Transmit data (inverted)	P← S
10	RXD	Receive data (not inverted)	$P \rightarrow S$
11		Reserved pin	#*3
12		Reserved pin	#*3
13	5VPP	Reserved pin	-
14	GND		-

- * 1. P: Personal computer
- * 2. X: XtraDrive
- * 3. #: Reserved terminal (leave open)
- * 4. Only in last line of the daisy chain

E 10.2

CABLE WITH RS-232 TO RS-422 ACTIVE ADAPTER

This cable is required when operating XtraDrive in Programming mode.

NOTE: In an RS-422 daisy chain cabling scheme; the termination resistor should only be added in the last link.

E 11 CONNECTING REGENERATIVE RESISTORS

If an external regenerative resistor is required for an XtraDrive with a power capacity greater than 0.5kW the internal resistor should be disconnected by removing the jumper between terminals B2 and B3 as illustrated below:

*The user must provide the regenerative resistor.

NOTE: XtraDrive units with power capacity of 400W and below do not have internal regeneration resistors and will not have a jumper between terminals B2 and B3.

Calculating the Regenerative Power Capacity

Simple Calculation Method

When driving a servo motor normally along the horizontal axis, check the external regenerative resistor requirements using the calculation method shown below.

Servo Amplifiers with Capacity of 400W or Less

Servo amplifiers with a capacity of 400W or less do not have built-in regenerative resistors. The energy that can be absorbed by capacitors is shown in the following table. If the rotational energy in the servo system exceeds these values, then connect a regenerative resistor externally between the servo amplifies's B1 and B2 terminals.

Voltage	Applicable Servo Amplifiers	REGENERATIVE ENERGY THAT CAN BE PROCESSED (JOULES)	COMMENTS	
200V	XD-P3-**, -P5-**	18.5	Value when the input voltage	
	XD-01-** to -04-**	37.1	is 200V AC	

Calculate the rotational energy in the servo system using the following equation:

$$\mathsf{E}_{\mathsf{S}} = \frac{\mathrm{J} \ \mathrm{x} \ (\mathsf{N}_{\mathsf{M}})^2}{128} \text{ Joules}$$

Where: $J = J_M + J_L$

 J_{M} : Servo motor rotor inertia (kg·m²)

 J_L : Motor axis conversion load inertia (kg·m²)

 $\ddot{N_{M}}$: Rotation speed of the servo motor (rpm)

E 12 CONNECTING YASKAWA OPTION BOARD

XtraDrive supports Yaskawa option boards. When connecting the Yaskawa option board, XtraDrive acts as an SGDH servo amplifier, includes control loops, which are not NCT (standard control loop of XtraDrive).

NOTE: XtraDrive's digital I/O allocation input (Pn50A – Pn510) default is different than SGDH default.

E 12.1 ATTACHING THE OPTION BOARD

XtraDrive parameter settings

- 1. Set Pn000.1=1 for Option Board detection. Set Pn191.3
- 2. Restart XtraDrive
- **NOTE:** These settings done automatically by selecting "Yaskawa Option Board" during wizard.

PARAMETER	DIG.	NAME	Setting	DESCRIPTION	DEFAULT
D. 101	2	Option Board	0	Option board enabled	0
Pn191	5	Enable	1	Option board ignored	0

Mounting the Option Board to XtraDrive

- 1. Turn XtraDrive power supply off.
- 2. Remove the connector cover from the CN10 connector on the XtraDrive.
- 3. Insert the lower two mounting notches into the mounting holes at the bottom right of the XtraDrive.
- 4. Push the Option Board, inserting the upper mounting notches of the board into the upper mounting holes on the right side of the XtraDrive.
- 5. For grounding, connect the ground wire of the board to the point marked "G" on the XtraDrive.

E 12.2 DETACHING THE OPTION BOARD

- 1. Turn XtraDrive power supply off.
- 2. Disconnect the ground wire of the board from the XtraDrive.
- 3. Push the upper mounting notch (single) of the board out off the upper mounting holes on the right side of the XtraDrive.
- 4. Turn XtraDrive power supply on.
- 5. Alarm A.E7 will appear. To clear the alarm executes Fn014 (option unit detection result clear), in the auxiliary function mode, and then cycle the power. See *Chapter* 9.2.11, "*Clearing The Option Unit Detection Alarm*".
- 6. Set Pn000.1 to the required control method and reset the XtraDrive.

E16 XtraDrive Users Guide

Page is intentionally left blank - for you to fill with your own notes.

Pn0000x00000x0FPI0x00000xFFF0x0000Function Selection Basic SwitchesPn0010x00000xFFF0x00000xFFF0x0000Function Selection Application Switches 1ÖPn0030x00000xFFF0x00000xFFF0x0000Function Selection Application Switches 3Pn0060x00000xFFF0x00000xFFF0x0010CH1 Analog Monitor SelectionPn0070x0000xFFF0x0010x0010CH2 Analog Monitor SelectionPn0080x00000x00000xFFF0x0010CH2 Analog Monitor SelectionPn0070x0000x00000x0011T0x0010CH2 Analog Monitor SelectionPn0080x00000x00000x0011T0x0010CH2 Analog Monitor SelectionPn1090x00000x00000xFFF0x0010CH2 Analog Monitor SelectionPn1010x0000x00000xFFF0x0010CH2 Analog Monitor SelectionPn1020x0000x00000xFFF0x0010CH2 Analog Monitor SelectionPn1030x0000x00000xFFF0x00100x0000Pn104120001/s0x00000x000Pn105012.0001/s0x0011/sPn1050012.0001/s0x011Inertia Ratio.Pn107000100x0011/s1/sPn108000050x0010x	ID	Value	Min	Max	Units(Rotary/Linear)	Default	Description
Pn0010x0000x0000xFFFImage0x000Function Selection Application Switches 1ÖPn0020x0000xFFFImage0x000Function Selection Application Switches 2Pn0030x0000x0000xFFFImage0x0000Function Selection Application Switches 3Pn0060x0000x0000xFFFImage0x0000CH1 Analog Monitor SelectionPn0070x0000x0000xFFFImage0x0010CH2 Analog Monitor SelectionPn0080x0000x0000x001Image0x0010CH2 Analog Monitor SelectionPn0100x0000x0000x001Image0x0010CH2 Analog Monitor SelectionPn1000x0000x0000x001Image0x0010CH2 Analog Monitor SelectionPn1000x0000x0010x001Image0x0010CH2 Analog Monitor SelectionPn1000x0000x001Image0x0011Image0x0010Pn1001010x001Image0x0011Select Dog Gain.Pn101200011Select Dog Gain.ImagePn102001Image0ImagePn1030001Image0ImagePn104000Select Dog Gain.ImagePn105000ImageImageImagePn106000ImageImageImagePn107 <td< td=""><td>Pn000</td><td>0x00D0</td><td>0x0000</td><td>0x0FD1</td><td></td><td>0x00D0</td><td>Function Selection Basic Switches</td></td<>	Pn000	0x00D0	0x0000	0x0FD1		0x00D0	Function Selection Basic Switches
Pn0020x01000x00000xFFFImage of the state of	Pn001	0x0000	0x0000	0xFFFF		0x0000	Function Selection Application Switches 1Ö
Pn0030x00020x00000xFFFFImage0x0002Function Selection Application Switches 3Pn0060x00100x00000xFFFF0x0010CH1 Analog Monitor SelectionPn0070x00000x00000x00000x00110x0010CH2 Analog Monitor SelectionPn0800x00000x00000x00010x00110x0000Linear Pole Sensors to Yaskawa ConverterPn1004012000Hz40Speed Loop Gain.Pn101200015512000.01ms2000Speed Loop Gain.Pn10240120001/s40Position Loop Gain.Pn103001000%0Inertia Ratio.Pn104001000%0Inertia Ratio.Pn115001000%0x0010Function Selection SwitchesPn11410020000xFFFF0x0000Motor and Encoder Selection SwitchesPn1150x10000x00000xFFFF0x0000Motor and Encoder Selection SwitchesPn1140x10000x00000xFFFF0x0000Motor and Cption Board Selection SwitchesPn1150009999Pulse/Rev2048A Bencoder Number of Pulses (Low).Pn11800655352020(Kp) Software commutation proportional loop gain.Pn119200655352020(Kp) Software commutation proportional loop gain.	Pn002	0x0100	0x0000	0xFFFF		0x0100	Function Selection Application Switches 2
Pn0060x00100x00000xFFFImage of the construction of the	Pn003	0x0002	0x0000	0xFFFF		0x0002	Function Selection Application Switches 3
Pn0070x00120x00000xFFFF	Pn006	0x0010	0x0000	0xFFFF		0x0010	CH1 Analog Monitor Selection
Pn0800x00000x00010x0001Image Pole Sensors to Yaskawa ConverterPn1004012000Hz40Speed Loop Gain.Pn101200015512000.01ms2000Speed Loop Integral Time Constant.Pn10240120001/s40Position Loop Gain.Pn103001000%0Inertia Ratio.Pn104001000%0Inertia Ratio.Pn10500100%0Feed-Forward (Speed Control).Pn106000x00000xFFF0x0010Function Selection SwitchesPn117100200100%0x0000Notor and Encoder Selection switches (After changed use hard reset)Pn1910x10000x00000xFFF0x0000Motor and Option Board Selection SwitchesPn192204809999Pulse/Rev2048AB Encoder Number of Pulses (Low).Pn19300419Pulse*1000/Rev020(Kd) Software commutation proportional loop gain.Pn1942065535200(Kd) Software commutation propertional loop gain.	Pn007	0x0012	0x0000	0xFFFF		0x0012	CH2 Analog Monitor Selection
Pn1004012000Hz40Speed Loop Gain.Pn101200015512000.01ms2000Speed Loop Integral Time Constant.Pn10240120001/s40Position Loop Gain.Pn103001000%0Inertia Ratio.Pn104001000%0Inertia Ratio.Pn10500100%0Feed-Forward (Speed Control).Pn1100x0000xFFF	Pn080	0x0000	0x0000	0x0011		0x0000	Linear Pole Sensors to Yaskawa Converter
Pn101200015512000.01ms2000Speed Loop Integral Time Constant.Pn10240120001/s40Position Loop Gain.Pn103001000%0Inertia Ratio.Pn109001000%0Feed-Forward (Speed Control).Pn1100x00100x00000xFFF0x0010Function Selection SwitchesPn11710020100%0x0000100Pn1900x00000xFFF-0x0000Motor and Encoder Selection switches (After changed use hard reset)Pn1910x10000x00000xFFF-0x0000Motor and Option Board Selection SwitchesPn192204809999Pulse/Rev2048AB Encoder Number of Pulses (Low).Pn19300419Pulse*1000/Rev0AB Encoder Number of Pulses (High).Pn19420065535200(Kd) Software commutation proportional loop gain.	Pn100	40	1	2000	Hz	40	Speed Loop Gain.
Pn10240120001/s40Position Loop Gain.Pn1030010000%0Inertia Ratio.Pn104001000%0Feed-Forward (Speed Control).Pn1100x00100x00000xFFF0x0010Function Selection SwitchesPn11710020100%1000x0000Pn1900x00000xFFF0x00001000Current Loop Gain Derating.Pn1910x10000x00000xFFF0x0000Motor and Encoder Selection switches (After changed use hard reset)Pn192204809999Pulse/Rev2048AB Encoder Number of Pulses (Low).Pn19300419Pulse*1000/Rev0AB Encoder Number of Pulses (High).Pn1942006553520065535	Pn101	2000	15	51200	0.01ms	2000	Speed Loop Integral Time Constant.
Pn1030010000%0Inertia Ratio.Pn10400100%0Fed-Forward (Speed Control).Pn1170x0000xFFF-0x0010Function Selection SwitchesPn11710020100%100100Current Loop Gain Derating.Pn1900x0000xFFF-0x000Motor and Encoder Selection switches (After changed use hard reset)Pn1910x1000x0000xFFF-0x000Motor and Option Board Selection SwitchesPn192204809999Pulse/Rev2048AB Encoder Number of Pulses (Low).Pn19300419Pulse*1000/Rev0AB Encoder Number of Pulses (High).Pn1942006553520(Kd) Software commutation proportional loop gain.	Pn102	40	1	2000	1/s	40	Position Loop Gain.
Pn10900100%0Feed-Forward (Speed Control).Pn1100x0000xFFF0x0000xFFF0x0010Function Selection SwitchesPn11710020100%100100Current Loop Gain Derating.Pn1900x0000xFFF0x00000xFFF0x0000Motor and Encoder Selection switches (After changed use hard reset)Pn1910x10000x00000xFFF0x0000Motor and Option Board Selection SwitchesPn192204809999Pulse/Rev2048AB Encoder Number of Pulses (Low).Pn19300419Pulse*1000/Rev0AB Encoder Number of Pulses (High).Pn1942006553520(Kd) Software commutation proportional loop gain.	Pn103	0	0	10000	%	0	Inertia Ratio.
Pn1100x00100x00000xFFFF0x0010Function Selection SwitchesPn11710020100%100100Current Loop Gain Derating.Pn1900x00000xFFF0x00000xFFF0x0000Motor and Encoder Selection switches (After changed use hard reset)Pn1910x10000x00000xFFF0x0000Motor and Option Board Selection SwitchesPn192204809999Pulse/Rev2048AB Encoder Number of Pulses (Low).Pn19300419Pulse*1000/Rev0AB Encoder Number of Pulses (High).Pn194206553520(Kd) Software commutation proportional loop gain.	Pn109	0	0	100	%	0	Feed-Forward (Speed Control).
Pn11710020100%100Current Loop Gain Derating.Pn1900x0000xFFF0x0000xFFF0x000Motor and Encoder Selection switches (After changed use hard reset)Pn1910x10000xFFF0x000Motor and Option Board Selection SwitchesPn192204809999Pulse/Rev2048AB Encoder Number of Pulses (Low).Pn19300419Pulse*10000/Rev0AB Encoder Number of Pulses (High).Pn194206553520(Kd) Software commutation proportional loop gain.	Pn110	0x0010	0x0000	0xFFFF		0x0010	Function Selection Switches
Pn1900x00000x00000xFFFF0x0000Motor and Encoder Selection switches (After changed use hard reset)Pn1910x10000xFFFF0x0000Motor and Option Board Selection SwitchesPn192204809999Pulse/Rev2048AB Encoder Number of Pulses (Low).Pn19300419Pulse*10000/Rev0AB Encoder Number of Pulses (High).Pn194206553520(Kg) Software commutation proportional loop gain.	Pn117	100	20	100	%	100	Current Loop Gain Derating.
Pn1910x10000x00000xFFFF0x0000Motor and Option Board Selection SwitchesPn192204809999Pulse/Rev2048AB Encoder Number of Pulses (Low).Pn19300419Pulse*10000/Rev0AB Encoder Number of Pulses (High).Pn19420655352(Kp) Software commutation proportional loop gain.Pn1952006553520(Kd) Software commutation speed loop gain.	Pn190	0x0000	0x0000	0xFFFF		0x0000	Motor and Encoder Selection switches (After changed use hard reset)
Pn192 2048 0 9999 Pulse/Rev 2048 AB Encoder Number of Pulses (Low). Pn193 0 0 419 Pulse*10000/Rev 0 AB Encoder Number of Pulses (High). Pn194 2 0 65535 2 (Kp) Software commutation proportional loop gain. Pn195 20 0 65535 20 (Kd) Software commutation propertional loop gain.	Pn191	0x1000	0x0000	0xFFFF		0x0000	Motor and Option Board Selection Switches
Pn193 0 419 Pulse*10000/Rev 0 AB Encoder Number of Pulses (High). Pn194 2 0 65535 2 (Kp) Software commutation proportional loop gain. Pn195 20 0 65535 20 (Kd) Software commutation propertional loop gain.	Pn192	2048	0	9999	Pulse/Rev	2048	AB Encoder Number of Pulses (Low).
Pn194 2 0 65535 2 (Kp) Software commutation proportional loop gain. Pn195 20 0 65535 20 (Kd) Software commutation speed loop gain.	Pn193	0	0	419	Pulse*10000/Rev	0	AB Encoder Number of Pulses (High).
Pn195 20 0 65535 20 (Kd) Software commutation speed loop gain	Pn194	2	0	65535		2	(Kp) Software commutation proportional loop gain.
	Pn195	20	0	65535		20	(Kd) Software commutation speed loop gain.
Pn196 20 0 65535 20 (Ki) Software commutation integral loop gain.	Pn196	20	0	65535		20	(Ki) Software commutation integral loop gain.
Pn197 0x0088 0x0000 0xFFFF 0x0088 0x0000 0xFFFF	Pn197	0x0088	0x0000	0xFFFF		0x0088	Software Commutation Switches
Pn199 1 1 256 Counts/Scale pitch 1 Linear Scale Pitch Multiplier to A guad B.	Pn199	1	1	256	Counts/Scale pitch	1	Linear Scale Pitch Multiplier to A guad B.
Pn1A0 60 0 500 % 60 (Tightness) Global Gain Factor.	Pn1A0	60	0	500	%	60	(Tightness) Global Gain Factor.
Pn1A2 40 30 3200 0.01ms 40 (KdFilter) Speed Loop Filter.	Pn1A2	40	30	3200	0.01ms	40	(KdFilter) Speed Loop Filter.
Pn1A4 20 0 2500 0.01ms 20 (TorqueFilter1) Torque Filter (Low Pass).	Pn1A4	20	0	2500	0.01ms	20	(TorqueFilter1) Torque Filter (Low Pass).
Pn1A5 0 0 1000 0.1% 0 (TorqueFilter2) Torque Filter (Second Order).	Pn1A5	0	0	1000	0.1%	0	(TorqueFilter2) Torque Filter (Second Order).
Pn1A7 0x1121 0x0000 0x1121 0x1	Pn1A7	0x1121	0x0000	0x1121		0x1121	Integral Mode Switch
Pn1A9 40 0 500 Hz 40 (Kis) Integral Loop Gain.	Pn1A9	40	0	500	Hz	40	(Kis) Integral Loop Gain.
Pn1AA 40 0 500 Hz 40 (Kp) Proportional Loop Gain.	Pn1AA	40	0	500	Hz	40	(Kp) Proportional Loop Gain.
Pn1AB 30 0 500 Hz 30 (Kiv) Supplementary Proportional Loop Gain.	Pn1AB	30	0	500	Hz	30	(Kiv) Supplementary Proportional Loop Gain.
Pn1AC 80 0 2000 Hz 80 (Kd) Speed Loop Gain.	Pn1AC	80	0	2000	Hz	80	(Kd) Speed Loop Gain.
Pn1AD 0 0 500 % 0 (Ka) Acceleration Loop Gain.	Pn1AD	0	0	500	%	0	(Ka) Acceleration Loop Gain.
Pn1AE 300 0 2500 0.01ms 300 Acceleration Loop Filter.	Pn1AE	300	0	2500	0.01ms	300	Acceleration Loop Filter.
Pn1AF 0 0 200 % 0 (Kff) Feed-forward Gain.	Pn1AF	0	0	200	%	0	(Kff) Feed-forward Gain.
Pn1B5 160 100 1000 % 160 160 Maximum Variable Gain.	Pn1B5	160	100	1000	%	160	Maximum Variable Gain.
Pn1BB 2000 10 2000 Hz 2000 (KffSpring) Feed Forward Compensation.	Pn1BB	2000	10	2000	Hz	2000	(KffSpring) Feed Forward Compensation.
Pn1BC 300 0 2500 0.01ms 300 Filter on Command Acceleration.	Pn1BC	300	0	2500	0.01ms	300	Filter on Command Acceleration.
Pn1BD 2000 10 2000 Hz 2000 (KfbSpring) Reduction of Vibrations due to System Flexibility.	Pn1BD	2000	10	2000	Hz	2000	(KfbSpring) Reduction of Vibrations due to System Flexibility.
Pn1BE 3160 0 65535 3160 (Kiv) Software communication speed loop integral gain.	Pn1BE	3160	0	65535		3160	(Kiv) Software communication speed loop integral gain.
Pn1BF 3 1 15 3 Integral Switch Advance for Pulse-Train.	Pn1BF	3	1	15		3	Integral Switch Advance for Pulse-Train.
Pn1C0 0 0 25 ms 0 Integral Offset Averaging Time.	Pn1C0	0	0	25	ms	0	Integral Offset Averaging Time.
Pn1C1 3 0 8 125 us 3 Integral Switch Advance.	Pn1C1	3	0	8	125 us	3	Integral Switch Advance.
Pn200 0x0004 0x0000 0xFFFF 0x0004 0x0000 0xFFFF 0x0004 Position Control Reference Selection Switches (After changed use hard reset)	Pn200	0x0004	0x0000	0xFFFF		0x0004	Position Control Reference Selection Switches (After changed use hard reset)
Pn201 2048 0 65535 Serial: p/r; AB: Ratio*65536 2048 PG Divider (Rotary Motor).	Pn201	2048	0	65535	Serial: p/r; AB: Ratio*65536	2048	PG Divider (Rotary Motor).
Pn202 1 1 65535 1 Pulse-Train Electronic Gear Ratio (Numerator).	Pn202	1	1	65535		1	Pulse-Train Electronic Gear Ratio (Numerator).
Pn203 1 1 65535 1 Pulse-Train Electronic Gear Ratio (Denominator).	Pn203	1	1	65535		1	Pulse-Train Electronic Gear Ratio (Denominator).
ID	Value	Min	Мах	Units(Rotary/Linear)	Default	Description	
-------	--------	--------	--------	---	---------	--	
Pn205	65535	0	65535	rev	65535	Multi-turn Limit Setting.	
Pn216	0	0	65535	0.1ms	0	Command Smoothing.	
Pn280	0	0	65535	um	0	Linear Scale Pitch.	
Pn281	1	1	256	Serial: Counts/scale pitch; AB: Ratio*65536	1	PG Divider (Linear Motor).	
Pn2A2	2000	0	65535	Speed Units	0	Work Speed Default (Low).	
Pn2A3	0	0	256	Speed Units*65536	0	Work Speed Default (High).	
Pn2A4	1000	0	65535	User Units	0	Work Acceleration Default (Low).	
Pn2A5	0	0	256	User Units*65536	0	Work Acceleration Default (High).	
Pn2A6	0	0	63999	usec	0	Work Jerk-Smoothing Time Default.	
Pn2A8	65535	0	65535	User Units	65535	Quick Stop Deceleration (Low).	
Pn2A9	256	0	256	User Units*65536	256	Quick Stop Deceleration (High).	
Pn2B0	24576	0	65535		1	Position Units Ratio Numerator (Low).	
Pn2B1	0	0	16383		0	Position Units Ratio Numerator (High).	
Pn2B2	600	0	65535		1	Position Units Ratio Denominator (Low).	
Pn2B3	0	0	16383		0	Position Units Ratio Denominator (High).	
Pn2B4	24576	0	65535		1	Speed Units Ratio Numerator (Low).	
Pn2B5	0	0	16383		0	Speed Units Ratio Numerator (High).	
Pn2B6	6000	0	65535		1	Speed Units Ratio Denominator (Low).	
Pn2B7	0	0	16383		0	Speed Units Ratio Denominator (High).	
Pn2B8	24576	0	65535		1	Acceleration Units Ratio Numerator (Low).	
Pn2B9	0	0	16383		0	Acceleration Units Ratio Numerator (High).	
Pn2BA	60000	0	65535		1	Acceleration Units Ratio Denominator (Low).	
Pn2BB	0	0	16383		0	Acceleration Units Ratio Denominator (High).	
Pn2C0	7	0	250	User units	7	Position Error window for exact positioning.	
Pn2C1	24000	1	24000	0.1% of rated torque/ms	24000	Torque Slope.	
Pn2C4	7	0	250	User units	7	Synchronized Window for Pulse Train.	
Pn2C6	0x0001	0x0000	0x0001		0x0001	Communication Switch	
Pn2C7	0x0008	0x0000	0x000F		0x0008	Home Input Selection	
Pn2C8	400	200	2000	ms	400	Auto-Tuning (Time Between Movements).	
Pn2C9	50	0	100	% of maximum speed	50	Auto-Tuning (Speed of Movement).	
Pn2CA	50	1	1000	ms	50	Auto-Tuning (Acceleration Time).	
Pn2CB	50	0	1000	ms	50	Auto-Tuning (Movement Plateau Time).	
Pn2CC	0	0	99		0	Auto-Start User Program.	
Pn2D1	0x0078	0x0000	0xFFFF		0x0078	Expand Input Selection 1	
Pn2D2	0x0000	0x0000	0x0003		0x0000	Expand Output selection 1	
Pn2D4	0x0001	0x0000	0x0001		0x0001	Oscillation Canceling Switch	
Pn300	600	150	3000	0.01V/rated speed	600	Speed Reference Input Gain.	
Pn301	100	0	10000	rom	100	Speed 1 (Rotary Motor).	
Pn302	200	0	10000	rom	200	Speed 2 (Rotary Motor).	
Pn303	300	0	10000	ram	300	Speed 3 (Rotary Motor).	
Pn304	500	0	10000	rom	500	Jog Speed (Rotary Motor).	
Pn305	0	0	10000	ms	0	Soft Start Acceleration Time.	
Pn306	0	0	10000	ms	0	Soft Start Deceleration Time.	
Pn307	40	0	65535	0.01ms	40	Speed Reference Filter Time Constant.	
Pn308	0	0	65535	0.01ms	0	Speed Feedback Filter Time Constant.	
Pn380	10	0	5000	mm/s	10	Speed 1 (Linear Motor).	
Pn381	20	0	5000	mm/s	20	Speed 2 (Linear Motor).	
			5000			, , , , , , , , , , , , , , , , , , , ,	

ID	Value	Min	Max	Units(Rotary/Linear)	Default	Description
Pn382	30	0	5000	mm/s	30	Speed 3 (Linear Motor).
Pn383	40	0	5000	mm/s	40	Jog Speed (Linear Motor).
Pn400	30	10	100	0.1V/rated torque	30	Torque Reference Input Gain.
Pn401	100	0	65535	0.01ms	100	Torque Reference Filter Time Constant.
Pn402	800	0	800	% of rated torque	800	Forward Torque Limit (Rotary Motor).
Pn403	800	0	800	% of rated torque	800	Reverse Torque Limit (Rotary Motor).
Pn404	100	0	800	% of rated torque	100	Forward External Torque Limit.
Pn405	100	0	800	% of rated torque	100	Reverse External Torque Limit.
Pn406	800	0	800	% of rated torque	800	Emergency Stop Torque.
Pn407	10000	0	10000	rpm	10000	Speed Limit During Torque Control (Rotary Motor).
Pn408	0x0000	0x0000	0x0001		0x0000	Notch Filter Switch
Pn409	2000	50	2000	Hz	2000	Notch Filter Frequency.
Pn40A	70	70	1000		70	Notch Filter Width.
Pn480	5000	0	5000	mm/s	5000	Speed Limit During Force Control (Linear Motor).
Pn483	10	0	800	% of rated force	10	Forward Force Limit (Linear Motor).
Pn484	10	0	800	% of rated force	10	Reverse Force Limit (Linear Motor).
Pn500	7	0	250	ref./user	7	Position Error window for Coincidence signal output.
Pn501	10	0	10000	rpm	10	Zero Clamp Level (Rotary Motor).
Pn502	20	1	10000	rpm	20	Rotation Detection Level (Rotary Motor).
Pn503	10	0	100	rpm	10	Speed Coincidence Signal Output Width (Rotary Motor).
Pn504	7	1	250	ref./user	7	/NEAR Signal Width.
Pn505	1024	1	32767	256 ref. Unit	1024	Overflow Level.
Pn506	0	0	50	10ms	0	Brake Reference Servo OFF Delay Time.
Pn507	100	0	10000	rpm	100	Brake Reference Output Speed Level (Rotary Motor).
Pn508	50	10	100	10ms	50	Timing for Brake Reference Output during Motor Operation.
Pn509	20	20	1000	ms	20	Momentary Hold Time.
Pn50A	0x8881	0x0000	0xFFFF		0x8881	Input Signal Selections 1
Pn50B	0x8888	0x0000	0xFFFF		0x8888	Input Signal Selections 2
Pn50C	0x8888	0x0000	0xFFFF		0x8888	Input Signal Selections 3
Pn50D	0x8888	0x0000	0xFFFF		0x8888	Input Signal Selections 4
Pn50E	0x0000	0x0000	0xFFFF		0x0000	Output Signal Selections 1
Pn50F	0x0000	0x0000	0xFFFF		0x0000	Output Signal Selections 2
Pn510	0x0000	0x0000	0xFFFF		0x0000	Output Signal Selections 3
Pn512	0x0000	0x0000	0xFFFF		0x0000	Reserved
Pn580	10	0	5000	mm/s	10	Zero Clamp Level (Linear Motor).
Pn581	20	1	5000	mm/s	20	Motion Detection Level (Linear Motor).
Pn582	10	0	100	mm/s	10	Speed Coincidence Signal Output Width (Linear Motor).
Pn583	100	0	5000	mm/s	100	Brake Reference Output Speed Level (Linear Motor).
Pn600	0	0	65535	10W	0	Regenerative Resistor Capacity.
PnE20	1800	0	65535	Hz	1800	d-axis Proportional Gain
PnE21	1800	0	65535	Hz	1800	q-axis Proportional Gain
PnE22	300	0	65535	us	300	d-axis Integral Time
PnE23	300	0	65535	us	300	q-axis Integral Time
PnE24	8191	0	65535		8191	d-axis Integral Limit
PnE25	8191	0	65535		8191	q-axis Integral Limit
PnE26	0	0	65535	us	0	Low Pass Filter
PnEA0	0x0000	0x0000	0xFFFF		0x0000	Function Selection Switches

ID	Value	Min	Max	Units(Rotary/Linear)	Default	Description
PnEA2	0	0	10000	0.1%	0	Current Feed Forward
PnEA3	0	0	1000		0	Minimum PWM
PnEA4	16	0	1000		16	Compensate Diode Voltage
PnF01	0x0000	0x0000	0xFFFF		0x0000	Encoder Software Version.
PnF03	0x0000	0x0000	0xFFFF		0x0000	Low byte: Encoder Bit Number. High byte: Radix Point (division between position of single turn and other).
PnF04	0	0	65535		0	Multi-turn Limit.
PnF05	0x0000	0x0000	0xFFFF	R: 100 rpm ; L: 100 mm/s	0x0000	Low byte: Rated Speed. High byte: Maximum Speed.
PnF06	0x0000	0x0000	0xFFFF		0x0000	Low byte: Over Speed Detect Level (%). High byte: Pole Number.
PnF07	0	0	65535	R: 0.01 Nm ; L: N	0	Rotary Motor: Rated Torque. Linear Motor: Rated Force.
PnF08	0	0	65535	%	0	Maximum Torque.
PnF09	0	0	65535	0.1 Ао-р	0	Rated Current.
PnF0A	0	0	65535	0.1 Ао-р	0	Instant Maximum Current.
PnF0B	0	0	65535	R: 0.1 mV rms/rpm; L: 0.1mVrms/(mm/s)	0	EMF Constant.
PnF0C	0	0	65535	R: 10^-6 kgm^2 ; L: 0.01 kg	0	Motor Inertia.
PnF0D	0	0	65535	10^-3 ohm	0	Resistance.
PnF0E	0	0	65535	10^-2mH	0	Inductance.
PnF0F	0	0	65535	%	0	OL Detect Base Torque.
PnF10	0	0	65535	%	0	OL Detect Medium Torque.
PnF11	0	0	65535	10 s	0	OL Detect Medium Time.
PnF12	0	0	65535	%	0	OL Detect Medium Torque-2.
PnF13	0	0	65535	S	0	OL Detect Medium Time-2.
PnF15	0	0	65535	0.1mm/180 degree	0	Linear Pole Pitch.

F6 XtraDrive Users Guide

Page is intentionally left blank - for you to fill with your own notes.

Alarms. See also Maintenance and Troubleshooting			
Alarm Display Table	A34		
Checking Alarms	205		
Operation in Alarm Traceback Mode	205		
Transferring Alarm Contents	152		
Alarm Reset			
Analog Monitor. See also CN-5 Analog Monitor			

B

Battery		
Absolute Encoder Battery	. A5, A18, J	E10
Replacing the Battery for the Absolute Encoder		A5
Brake. See also Holding Brake		

С

Cables
Communication Cables 23
XtraDrive Cables
CN-10, Option Board Connector 7, 21
Attaching the Option Board E15
Connecting Yaskawa Option Board E15
Detaching the Option Board E15
CN-2 Host Controller Connection 41
CN-2 Connector Models 55
CN-2 Pin Positions 56
CN2
Connecting Feedback Cable and Motor Power 32
Encoder Interface CN-2 Connector 55
Signal Line Wire Sizes 18
Terminal Block Diagram 31
Terminal Strip Diagram 32
CN-5 Analog Monitor 7, 186
CN1
CN-1 I/O Signals Description 41
CN-1 Specifications 42
CN-1 Terminal Layout 42
CN-1 Wiring Diagrams for Operational Modes 49
CN1 I/O Signal Connector E8
CN1 Pin Connections 7, 23, 162.
See also CN1: CN-1 Terminal Layout
CN1-01 75, 87, 126
CN1-02 75, 87
CN1-03
CN1-04
CN1-05
CN1-06
CN1-07
CN1-08
CN1-09
CN1-10
CN1-11 80, 81, 82
CN1-12
CN1-14
CN1-15
CN1-21
CN1-22

CN11 25	
CN1-23	
CN1-26	
CN1-27	
CN1-28	
CN1-29.	
CN1-30	
CN1-31	
CN1-32	
CN1-33	
CN1-34	
CN1-35	
CN1-36	
CN1-37	
CN1-38	
CN1-39	
CN1-40	
CN1-41	80, 95, 96, 98, 101, 104, 110, 111, 113, 114, 120,
1	21, 162
CN1-42	
CN1-43	
CN1-44	
CN1-45	
CN1-46	
CN1-47	89
CN1-48	87
CN1-49	
I/O Signal N	ames and functions 43
Interface Cir	cuits 45 143
Interface for	Reference Input Circuits 45
Output Circu	it Interfaces
Output Circu	111 Interfaces 47
Connacti	ing an External Load to YtraDrive's Output 18
Connecti	ing an External Load to XtraDrive's Output
Connecti Connecting Two	ing an External Load to XtraDrive's Output
Connecti Connecti Connecting Two	ing an External Load to XtraDrive's Output48ing an Optocoupler Output Circuit48o XtraDrives (master-slave mode)48bit Simpl Allocation115
Connecti Connecting Two Output Circu	ing an External Load to XtraDrive's Output48ing an Optocoupler Output Circuit48o XtraDrives (master-slave mode)48it Signal Allocation115olde44
Connecti Connecting Two Output Circu Output Signa Prate In	ing an External Load to XtraDrive's Output48ing an Optocoupler Output Circuit48o XtraDrives (master-slave mode)48it Signal Allocation115ils44torlock116
Connecting Two Output Circu Output Signa Brake Int	ing an External Load to XtraDrive's Output48ing an Optocoupler Output Circuit48o XtraDrives (master-slave mode)48it Signal Allocation115ils44terlock116
Connecting Connecting Two Output Circu Output Signa Brake Int Near	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 o XtraDrives (master-slave mode) 48 iti Signal Allocation 115 uls 44 terlock 116 mable Outputs 116, 129, 130, 131, 132, 133, 163
Connecti Connecting Two Output Circu Output Signa Brake Int Near Program. Botation	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 o XtraDrives (master-slave mode) 48 it Signal Allocation 115 ids 44 terlock 116 mable Outputs 116 Detection 116
Connecti Connecting Two Output Circu Output Signa Brake Int Near Program. Rotation	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 io XtraDrives (master-slave mode) 48 iit Signal Allocation 115 ils 44 terlock 116
Connecti Connecting Two Output Circu Output Signa Brake Int Near Program. Rotation Servo Re	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 o XtraDrives (master-slave mode) 48 iti Signal Allocation 115 ils 44 terlock 116
Connecti Connecting Two Output Circu Output Signa Brake Int Near Program. Rotation Servo Re Speed Co	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 o XtraDrives (master-slave mode) 48 it Signal Allocation 115 ils 44 terlock 116 mable Outputs 116 Detection 116 poincidence 116
Connecti Connecting Two Output Circu Output Signa Brake Int Near Program Rotation Servo Re Speed Co Speed Li	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 o XtraDrives (master-slave mode) 48 it Signal Allocation 115 ils 44 terlock 116
Connecti Connecting Two Output Circu Output Signa Brake Int Near Program Rotation Servo Re Speed Co Speed Lit Torque L	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 o XtraDrives (master-slave mode) 48 it Signal Allocation 115 uls 44 terlock 116 mable Outputs 116 Detection 116 init Detection 116 mit Detection 116
Connecti Connecting Two Output Circu Output Signa Brake Int Near Program. Rotation Servo Re Speed Co Speed Li Torque L Warning.	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 o XtraDrives (master-slave mode) 48 it Signal Allocation 115 ils 44 terlock 116
Connecti Connecting Two Output Circu Output Signa Brake Int Near Program. Rotation Servo Re Speed Co Speed Lit Torque L Warning. Output Signa	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 o XtraDrives (master-slave mode) 48 it Signal Allocation 115 ils 44 terlock 116
Connecti Connecting Two Output Circu Output Signa Brake Int Near Program. Rotation Servo Re Speed Co Speed Lit Torque L Warning. Output Signa CN1-19	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 is O XtraDrives (master-slave mode) 48 it Signal Allocation 115 ils 44 terlock 116
Connecti Connecting Two Output Circu Output Signa Brake Int Near Program. Rotation Servo Re Speed Co Speed Li. Torque L Warning. Output Signa CN1-19 CN1-33	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 it Signal Allocation 115 ils 44 terlock 116
Connecti Connecting Two Output Circu Output Signa Brake Int Near Program Rotation Servo Re Speed Ca Speed Li Torque L Warning. Output Signa CN1-19 CN1-33 CN1-34	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 ing an Optocoupler Output (instance) 48 it Signal Allocation 115 ils 44 terlock 116
Connecti Connecting Two Output Circu Output Signa Brake Int Near Program. Rotation Servo Re Speed Ca Speed Lit Torque L Warning. Output Signa CNI-19 CNI-33 CNI-34 CNI-35	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 o XtraDrives (master-slave mode) 48 it Signal Allocation 115 ils 44 terlock 116
Connecti Connecting Two Output Circu Output Signa Brake Int Near Program. Rotation Servo Re Speed Lit Torque L Warning. Output Signa CN1-19 CN1-33 CN1-34 CN1-35 CN1-36	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 ing an Optocoupler Output (instance) 48 it Signal Allocation 115 ids 44 terlock 116
Connecti Connecting Two Output Circu Output Signa Brake Int Near Program Rotation Servo Re Speed Li Torque L Warning. Output Signa CNI-19 CNI-33 CNI-35 CNI-36 Signal Line V	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 ing an Optocoupler Output (instance) 48 it Signal Allocation 115 ils 44 terlock 116
Connecti Connecting Two Output Circu Output Signa Brake Int Near Program. Rotation Servo Re Speed Co Speed Lit Torque L Warning. Output Signa CN1-19 CN1-33 CN1-34 CN1-35 CN1-36 Signal Line V	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 it Signal Allocation 115 ils 44 terlock 116
Connecti Connecting Two Output Circu Output Signa Brake Int Near Program. Rotation Servo Re Speed Co Speed Li. Torque L Warning. Output Signa CNI-19 CNI-33 CNI-33 CNI-34 CNI-35 CNI-36 Signal Line V Using the Po Variable Res	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 in Signal Allocation 115 ist. 44 terlock 116
Connectin Connecting Two Output Circu Output Signa Brake Int Near Program Rotation Servo Re Speed Ca Speed Li Torque L Warning Output Signa CN1-19 CN1-33 CN1-33 CN1-34 CN1-35 CN1-36 Signal Line V Using the Po Variable Rest	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 in Signal Allocation 115 ist. 44 terlock. 116
Connectin Connecting Two Output Circu Output Signa Brake Int Near Program. Rotation Servo Re Speed Ca Speed Lit. Torque L Warning. Output Signa CN1-19 CN1-33 CN1-34 CN1-35 CN1-36 Signal Line V Using the Po Variable Rest	ing an External Load to XtraDrive's Output 48 ing an Optocoupler Output Circuit 48 ing an Optocoupler Output Circuit 48 in Signal Allocation 115 ils 44 terlock 116
Connecti Connecting Two Output Circu Output Signa Brake Int Near Program. Rotation Servo Re Speed Ca Speed Lit Torque L Warning. Output Signa CNI-19 CNI-33 CNI-34 CNI-35 CNI-36 Signal Line V Using the Po Variable Rest Component Parts The XtraDriv	ing an External Load to XtraDrive's Output48ing an Optocoupler Output Circuit48ing an Optocoupler Output Circuit116ing an Optocoupler Output Circuit116ing an Optocoupler Output Circuit116ing an Optocoupler Output Circuit116ind Detection116init Detection116init Detection116init Detection116isorription86868686868786888689868086818181818181818181828384848485868686878888888888898880888181818483848485858685868674867487 </td

XtraDrive System Components 22
Contacting YET
Web sitexii
Contact Input Speed 114
Control
Connections to the XtraDrive
Single- Phase 0.8kW and 1.5kW Main Circuit Specifications 28
Single- Phase 100V/200V Main Circuit Specifications 27
Three- Phase 200V Main Circuit Specifications
Three- Phase 400 V Main Circuit Specifications
Control Mode Selection 114

D

Defaulat Parameter ValuesF1

E

Electronic Gear Function

	Setting the Electronic Gear (for Reference Pulses) 91	1
	Using the Electronic Gear Function	l
En	coder	
	Absolute Encoders 142)
	Absolute Encoder Battery E10)
	Absolute Encoder Reception Sequence 148	3
	Absolute Encoder Setup 145	5
	Absolute Encoder Transmission Sequence 149)
	AB Encoders 153	3
	Configuration of Serial Commands for AB Encoders 155	5
	Configuring an Absolute Encoder 144	1
	Connecting Pulse A/B Encoder without C Pulse (Index Pulse) E9)
	Contents of Absolute Data 148	3
	Extending Encoder Cables B11	l
	Interface Circuit	3
	Outline of Absolute Signals 148	3
	PSO Serial Data Specifications 150)
	Replacing the Battery for the Absolute Encoder A5	5
	SEN Signals 143	3
	Serial Encoder	3
	Torque)
	Transferring Alarm Contents 152)
	Using the Encoder Signal Output 86	5

F

Forward Current Limit	114
Forwaru Kun Promot	114
Servo Motor Stop Mode for P-OT and N-OT Input Signals	71
Functions	
Adjusting Offset	118
Applied Operation	204
Auto Running a User Program	164
Auto Tuning	163
Auxiliary Functions	C17
Auxiliary Function Execution	68
Function References. See Table, Page 204; See also Table	
on Page C17; See also Table on Page C17	
<i>Fn</i> 002	206
Fn003	5

Reference Pulse Inhibit Function (/inhibit)	110
Setting Stop Functions	118
Torque Feed-Forward Function	106
Using the Soft Start Function	170
Using the Zero Clamp Function	120

G

Gain Switching		114
Grounding	7, 23,	, 26
Correct Grounding		B6
Grounding System		16

H

Holding Brake

/BK Signal Output Conditions During Servo Motor Operation . 125
Brake ON Timing 124
Brake Power Supplies E7
Holding Brake Setting 124
Using the Holding Brake 122
Wiring Example 122
Host Controllers
Connecting MITSUBISHI's AD72 Positioning Unit D8
Connecting MITSUBISHI's AD75 Positioning Unit D9
Connecting OMRON's C500-NC112 Position Control Unit D7
Connecting OMRON's C500-NC222 Position Control Unit D6
Connecting the GL-Series B2813 Positioning Module D5
Connecting the GL-Series MC20 Motion Module D3, D4
Connection Examples D1
Host Controllers/PC Connection.

See a	lso CN-2	2 Host	Controlle	· Connection
-------	----------	--------	-----------	--------------

I

I/O Signal Connections. See also CN1 Input Circuits

	Allocating Other Input Signals	114
	Examples of Input Signal Allocation	113
	Example of an Input Circuit	104
	Input Circuit Example	79
	Input Circuit Signal Allocation	112
	Input Signals	43, 103
	Input Signal Connections	89
	Interface for Reference Input Circuits	45
	Reference by Pulse Input	80
	Reference Position Input Circuit	45
	Using Servo ON Input Signal (/S-ON)	127
In	stallation	1 2 10
	Stanation	1, 3, 10
	Appearance and Nameplate	1, 3, 10 8
	Appearance and Nameplate Checking on Delivery	1, 5, 10
	Appearance and Nameplate Checking on Delivery Checking Products on Delivery	1, 3, 10
	Appearance and Nameplate Checking on Delivery Checking Products on Delivery Connecting Yaskawa Option Board	1, 3, 10
	Appearance and Nameplate Checking on Delivery Checking Products on Delivery Connecting Yaskawa Option Board Detaching the Option Board	1, 3, 10
	Appearance and Nameplate Checking on Delivery Checking Products on Delivery Connecting Yaskawa Option Board Detaching the Option Board Disposal	1, 3, 10
	Appearance and Nameplate Checking on Delivery Checking Products on Delivery Connecting Yaskawa Option Board Detaching the Option Board Disposal Environmental Factors	1, 3, 10
	Appearance and Nameplate Checking on Delivery Checking Products on Delivery Connecting Yaskawa Option Board Detaching the Option Board Disposal Environmental Factors Environment Inside Control Box	1, 3, 10
	Appearance and Nameplate Checking on Delivery Checking Products on Delivery Connecting Yaskawa Option Board Detaching the Option Board Disposal Environmental Factors Environment Inside Control Box Extending Encoder Cables	1, 3, 10
	Appearance and Nameplate Checking on Delivery Checking Products on Delivery Connecting Yaskawa Option Board Detaching the Option Board Disposal Environmental Factors Environment Inside Control Box Extending Encoder Cables Installation Sites	1, 3, 10
	Appearance and Nameplate Checking on Delivery Checking Products on Delivery Connecting Yaskawa Option Board Detaching the Option Board Disposal Environmental Factors Environment Inside Control Box Extending Encoder Cables Installation Sites Maintenance and Inspection	1, 3, 10

Multiple XtraDrive
Notes for Safe Operation 1
Operating Conditions
Operation
Orientation 11
Ratings and Specifications 227
Safety Precautions 1
Storage and Transportation
Using More Than One XtraDrive B10
Warning Label
Where Mounted Side by Side 12
Wiring
XtraWare Software Installation

J

JOG	33
JOG Operation	206
Jog Operation Using Operator Panel	38
Using the JOG Function	37

\mathbf{M}

Maintenance
Maintenance and Inspection 6
Maintenance and Troubleshooting. See Alarms
Alarms
A.91
A.92
A.CC
A: Normal Operation A31
A. 00:Multi-Turn Data Error A6
A. 02: Parameter Breakdown A7
A. 03: Main Circuit Detection A7
A. 04: Parameter Setting Error A7
A. 05: Servo Motor and Amplifier Combination Error A8
A. 10: Overcurrent or Heat Sink Overheated A8
A. 30: Regenerative Error A9
A. 31: Overflow A9
A. 32: Regenerative Overload A10
A. 40: Main Circuit DC Voltage Error Detected:
Overvoltage A11
A. 41: Main Circuit DC Voltage Error Detected:
Undervoltage A11
A. 51: Overspeed A12
A. 71: Overload: High Load A12
A. 72: Overload: Low Load A12
A. 73: Dynamic Brake Overload A14
A. 74: Overload of Surge Current Limit Resistor
A. 7A: Heat Sink Overheated A15
A. 80: Position Error A16
A. 81: Absolute Encoder Backup Power Supply Error A15, A17
A. 82: Encoder Checksum Error A17
A. 83: Absolute Encoder Battery Error A18
A. 84: Absolute Encoder Data Error A19
A. 85: Absolute Encoder Overspeed A19
A. 86: Encoder Overheated A20
A. 99: Alarm Reset (Not Alarm) A20

3 1 1	A21
A. b2: Reference Toraue Input Read Error	A21
A. C1: Servo Run Away	A22
A. C2: Commutation (Phase Finding) Error	A23
A. C3: PA. PB-Phase Disconnection of PG Signal Li	ne A23
A. C4: PC-Phase Disconnection of PG Signal Line	A24
A. C8: Absolute Encoder Clear Error and Multi-Tur	n Limit
Setting Error	A25
A. C9: Encoder Communications Error	A26
A CA: Encoder Parameter Error	A26
A Ch: Encoder Fchoback Frror	1120 A27
A CC: Multi-Turn Limit Disagreement Alarm	1127 A27
A do: Position Error Pulse Overflow	1127 127
A F7: Option Unit Detection From	A20
A. El: Dower Line Open Phase	A29 A20
CDE00. Disital Operator Transmission Error 1	A29 A20
CPE01: Digital Operator Transmission Error 2	ASU
DNOT	A30 24
PNOI	
Alarm Display Table	A34
Replacing the Battery for the Absolute Encoder	A5
Servo motor Inspection	A3
Servo Amplifier Inspection	A4
Trouble Shooting Problems with Alarm Displays	A5
Trouble Shooting Problems with No Alarm Display	A32
Warning Displays	A36
XtraDrive Inspection and Maintenance	A3
Model Number	
Type Designation	9, 22
Mode Selection & Description	
Analog Input or Contact Input Velocity Control	166
	100
Basic Mode Selection	100 38
Basic Mode Selection Contact Input Speed Control	100 38 95
Basic Mode Selection Contact Input Speed Control Control from Option Board	100 38 95 . 49, 57
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection	100 38 95 . 49, 57 117
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train)	100 38 95 . 49, 57 117 . 49, 57
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode	100 38 95 . 49, 57 117 . 49, 57 . 49, 57
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control	100 38 95 . 49, 57 117 . 49, 57 . 49, 57 97
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference	100 38 95 . 49, 57 117 . 49, 57 97 80
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference Selection of Control Mode	100 38 95 . 49, 57 117 . 49, 57 . 49, 57 97 80 165
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference Selection of Control Mode Setting Reverse Rotation Mode	100 38 95 . 49, 57 117 . 49, 57 97 80 165 69
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference Selection of Control Mode Setting Reverse Rotation Mode Speed (Contact/ Analog)	100 38 95 . 49, 57 117 . 49, 57 97 80 165 69 . 49, 57
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference Selection of Control Mode Setting Reverse Rotation Mode Speed (Contact/ Analog) Speed (Contact/ Torque Analog)	100 38 95 . 49, 57 117 . 49, 57 97 80 165 69 . 49, 57 . 49, 57
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference Selection of Control Mode Setting Reverse Rotation Mode Speed (Contact/ Analog) Speed (Contact/ Torque Analog) Speed Analog	160 38 95 . 49, 57 117 . 49, 57 . 49, 57 80 165 69 . 49, 57 . 49, 57 . 49, 57
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference Selection of Control Mode Setting Reverse Rotation Mode Speed (Contact/ Analog) Speed (Contact/ Torque Analog) Speed Contact	160 38 95 . 49, 57 117 . 49, 57 . 49, 57 80 165 69 . 49, 57 . 49, 57 . 49, 57
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference Selection of Control Mode Setting Reverse Rotation Mode Speed (Contact/ Analog) Speed (Contact/ Torque Analog) Speed Contact Speed Contact Speed Contact Speed Contact	160 38 95 . 49, 57 117 . 49, 57 . 49, 57 97 80 165 69 . 49, 57 . 49, 57 . 49, 57 . 49, 57 . 49, 57
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference Selection of Control Mode Setting Reverse Rotation Mode Speed (Contact/ Analog) Speed (Contact/ Torque Analog) Speed Contact Speed Contact Speed Contact Speed Control: CN1-41 Speed Control (Analog / Zero Clamp)	100 38 95 . 49, 57 117 . 49, 57 . 49, 57 80 165 69 . 49, 57 . 49, 57 . 49, 57 . 49, 57 . 49, 57
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference Selection of Control Mode Setting Reverse Rotation Mode Speed (Contact/ Analog) Speed (Contact/ Torque Analog) Speed (Contact Speed Contact Speed Contact Speed Contact Speed Control: CN1-41 Speed Control (Analog / Zero Clamp) Speed Reference	100 38 95 . 49, 57 117 . 49, 57 97 80 165 69 . 49, 57 . 49, 57 . 49, 57 . 49, 57 101 . 49, 57 78
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference Selection of Control Mode Setting Reverse Rotation Mode Speed (Contact/ Analog) Speed (Contact/ Torque Analog) Speed (Contact Speed Contact Speed Contact Speed Contact Speed Control: CN1-41 Speed Control (Analog / Zero Clamp) Speed Reference Torque	100 38 95 . 49, 57 117 . 49, 57 97 80 165 69 . 49, 57 . 49, 57 . 49, 57 . 49, 57 101 . 49, 57 78 78
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference Selection of Control Mode Setting Reverse Rotation Mode Speed (Contact/ Analog) Speed (Contact/ Torque Analog) Speed (Contact / Torque Analog) Speed Contact Speed Contact Speed Contact Speed Control: CN1-41 Speed Control (Analog / Zero Clamp) Speed Reference Torque Torque	100 38 95 . 49, 57 117 . 49, 57 97 80 165 69 . 49, 57 . 49, 57 . 49, 57 101 . 49, 57 78 78 49, 57
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference Selection of Control Mode Setting Reverse Rotation Mode Speed (Contact/ Analog) Speed (Contact/ Torque Analog) Speed Contact Speed Contact Speed Contact Speed Control: CN1-41 Speed Control (Analog / Zero Clamp) Speed Reference Torque Torque (Analog)	100 38 95 . 49, 57 117 . 49, 57 97 80 165 69 . 49, 57 . 49, 57 . 49, 57 101 . 49, 57 78 49, 57 78 49, 57 100
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference Selection of Control Mode Setting Reverse Rotation Mode Speed (Contact/ Analog) Speed (Contact/ Torque Analog) Speed (Contact / Torque Analog) Speed Contact Speed Contact Speed Control: CN1-41 Speed Control: CN1-41 Speed Control (Analog / Zero Clamp) Speed Reference Torque Torque (Analog) Torque Control Selection Torque Control Selection	100 38 95 . 49, 57 117 . 49, 57 . 49, 57 97 80 165 69 . 49, 57 . 49, 57 . 49, 57 78 78 49, 57 . 49, 57 100 . 100
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference Selection of Control Mode Setting Reverse Rotation Mode Speed (Contact/ Analog) Speed (Contact/ Torque Analog) Speed (Contact / Torque Analog) Speed Contact Speed Control: CN1-41 Speed Control: CN1-41 Speed Control (Analog / Zero Clamp) Speed Reference Torque Torque (Analog) Torque Control Selection Torque limiting by Analog Voltage Reference Using Torque Control	100 38 95 . 49, 57 . 49, 57 78 78 49, 57 . 49, 57 100 108
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference Selection of Control Mode Setting Reverse Rotation Mode Speed (Contact/ Analog) Speed (Contact/ Torque Analog) Speed (Contact / Torque Analog) Speed Contact Speed Control: CN1-41 Speed Control: CN1-41 Speed Control (Analog / Zero Clamp) Speed Reference Torque Torque (Analog) Torque Control Selection Torque limiting by Analog Voltage Reference Using Torque Control	100 38 95 . 49, 57 117 . 49, 57 . 49, 57 80 165 69 . 49, 57 . 49, 57 . 49, 57 . 49, 57 78 78 49, 57 . 49, 57 78 49, 57 . 49, 57 100 108 100
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference Selection of Control Mode Setting Reverse Rotation Mode Speed (Contact/ Analog) Speed (Contact/ Torque Analog) Speed (Contact / Torque Analog) Speed Control: CN1-41 Speed Control: CN1-41 Speed Control (Analog / Zero Clamp) Speed Reference Torque Torque (Analog) Torque Control Selection Torque limiting by Analog Voltage Reference Using Torque Control	100 38 95 . 49, 57 117 . 49, 57 97 80 165 69 . 49, 57 . 49, 57 . 49, 57 . 49, 57 78 49, 57 78 49, 57 100 108 100 100 100
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference Selection of Control Mode Setting Reverse Rotation Mode Speed (Contact/ Analog) Speed (Contact/ Analog) Speed (Contact / Torque Analog) Speed Contact Speed Control: CN1-41 Speed Control: CN1-41 Speed Control (Analog / Zero Clamp) Speed Reference Torque Torque Gontrol Selection Torque Control Selection Torque limiting by Analog Voltage Reference Using Torque Control Monitor Mode Vales. <i>See also</i> Table on C17	100 38 95 . 49, 57 117 . 49, 57 97 80 165 69 . 49, 57 . 49, 57 . 49, 57 . 49, 57 78 49, 57 78 49, 57 100 108 100 100 100
Basic Mode Selection Contact Input Speed Control Control from Option Board Control Mode Selection NCT Position Control (Pulse Train) NCT Programming Mode Operation By Contact Input Speed Control Position Reference Selection of Control Mode Setting Reverse Rotation Mode Speed (Contact/ Analog) Speed (Contact/ Torque Analog) Speed Control: CN1-41 Speed Control (Analog / Zero Clamp) Speed Reference Torque Torque Control Selection Torque Control Selection Torque limiting by Analog Voltage Reference Using Torque Control Monitor Mode Monitor Mode Monitor Mode	100 38 95 . 49, 57 117 . 49, 57 97 80 165 69 . 49, 57 . 49, 57 . 49, 57 78 78 100 108 100 108 100 108 100 107 74, 77 74, 77

Motor	23
Ratings and Specifications 22	27
Selection of Rotation Direction	98
Single-Phase 100V XtraDrive and Motor Combinations 23	32
Single-Phase 200V XtraDrive and Motor Combinations 23	33
Start and Stop) 7
Switching Servo Motor Rotation Direction	59
Terminal Block Diagram	31
Terminal Strip Diagram 3	32
Three-Phase 200V XtraDrive and Motor Combinations 23	34
Three-Phase 400V XtraDrive and Motor Combinations 23	35
Using Servo ON Input Signal (/S-ON) 12	27
Using the Positioning Completed Output signal (/coin) 12	28

Ν

Nameplate
NCT Position Control 176
NCT Gain Parameters 179
NCT Position Control (Pulse Train) 49, 58
Position Control Block Diagram 178
Position Control Mode 193
Tuning Procedure for Position Control Parameters
Typical Connections for NCT Position Control
NCT Programming
Speed Contact
Typical Connections for NCT Programming Operation 53
Noise Control
Installation and Wiring a Noise Filter
Using Noise Filters
Wiring for Noise Control

Operation	5
Switching Servo Motor Rotation Direction	. 69
Operator Panel	189
Absolute Encoder Setup	145
Adjusting the Motor Current Detection Offset	221
Applied Operation	204
Automatic Adjustment of Speed and Torque Reference Offset	207
Automatic Adjustment of the Motor Current Detection Offset	221
Basic Mode Selection	191
Basic Operation	189
Changing Function Selection Parameters	198
Changing Parameter Value Settings	194
Checking the Motor Model	213
Checking the Software Version	214
Clearing Alarm Traceback Data	212
Clearing the Option Unit Detection Alarm	224
Contents of Monitor Display	200
Display Messages	190
Function Selection Parameters	196
Initializing Parameter Settings	217
Input Signal Monitor Display	201
JOG Operation	206
Manually Adjusting the Motor Current Detection Offset	222
Manual Adjustment of Speed and Torque Reference Offset	209

Manual A division of Targua Deference Officet	211
Manual Adjustment of Angles Meniter Output	211
Manual Gain Adjustment of Analog Monitor Output	220
Manual Zero Adjustment and Gain Adjustment of	010
Analog Monitor Output	218
Manual Zero Adjustment of Analog Monitor Output	218
Multi-Turn Setup	147
Operation in Monitor Mode	199
Operation in Parameter setting Mode	194
Origin Search Mode	215
Output Signal Monitor Display	202
Programmable I/O Signal Monitor Display	201
Reference Pulse/Feedback Pulse Counter Monitor Display .	203
Resetting Servo Alarms	191
Status Display Mode	192
Using the Built-In Operator Panel	191
Using the Monitor Mode	199
Using the Operator Panel	189
Working with the XtraDrive Operator Panel	38
Write Protection Setting	223
Option Board Connector.	
See also CN-10, Option Board Connector	
Output Circuits	
Allocating Other Output Signals	116
Connecting an External Load to XtraDrive's Output	48
Connecting an Open-Collector Output Circuit	47
Connecting an Optocoupler Output Circuit	48
Connecting a Line-Driver Output Circuit	47
Connecting Two XtraDrives (master-slave mode)	48
Output Circuit Interfaces	47
Output Circuit Signal Allocation	115
Output Signal Allocation	115
Output Signal Selection Default Settings	115
Output Signal Selection Default Settings	
Output Signal Connections	90
Output Signal Connections	90 86
Output Signal Connections Using the Encoder Signal Output Using the Positioning Completed Output signal (/coin)	90 86
Output Signal Connections Using the Encoder Signal Output Using the Positioning Completed Output signal (/coin)	90 86 128
Output Signal Connections Using the Encoder Signal Output Using the Positioning Completed Output signal (/coin) Overtravel Function	90 86 128

P

Parameters	C5
Absolute Encoder Setup	145
Allocating Other Input Signals	114
Auto Running a User Program	164
Auto Tuning	163
Belts and Pulleys	94
Circular Tables	94
Configuring an Absolute Encoder	144
Contact Input Speed Control	95
Control Block Diagram	94
Control Mode Selection	117
Digital I/O	162
Display Definition for Function Selection Parameters	197
Electronic Gear Setting Examples	93
Enabling/Disabling Input Signals	71
Error Counter Clear Input	85
Examples of Input Signal Allocation	113

Example of Contact Input Speed Control Operation
Extended Input Signal Selection Switches C15
Extended Output Signal Selections
External Speed Limit Function: 106
Function Selection Constants 68
Function Selection Parameters Types
Handling Power Loss 135
Home Switches C15
Homing
Input Circuit Signal Allocation 112
Input Signal Selections C14
Internal Speed Limit Function 105
Limiting Torque
List of Parameters C1
Operation By Contact Input Speed Control
Other Parameters
Output Circuit Signal Allocation 115
Output Signal Selections
Parameter Configurations
Parameter Numbers
See also List of Parameters, Appendix C;
See also Parameters page C5
Fn00 = 55, 57, 59, 200 $p_{m000} = -78, 05, 06, 08, 00, 100, 101, 104, 110, 117, 120$
Pn000.1, 76, 95, 90, 98, 99, 100, 101, 104, 110, 117, 120, 121, 122, 165, 166, 176, 180, $E15$
121, 122, 103, 100, 170, 100, , E13
$P_{10}01.0$
70, 90, 90, 99, 100, 101, 104,
$P_{n}(0, 1, 117, 120, 121, 122, 100, 170, 100, 121)$
$P_{n}(0) = 0$ 102 107
$P_{n}002.0$ 102,107
$P_{n}(0,2,2)$ 144
Pn003.0 186.187
Pn003 1 186 187
Pn006.0 186.187
Pn006 2 187
Pn007.0 186.187
Pn007 2 187
Pn100 168, 171, 172, 174, 176, 181
Pn101 168 171 172 174 176 181
Pn103
Pn190.0
Pn190.1
Pn190.2
Pn190.3
Pn191.0
Pn192
Pn193
Pn1A0
Pn1A2-Pn1A5
Pn1A7
Pn1A9
Pn1AA
Pn1AB
Pn1AC
Pn1AD
Pn1AE

Pn1AF	
Pn1B5	
Pn1R5_P	n1R9 181
D _n 1RR	101
	<i>I</i> 11 <i>DD</i>
PnIBF	
PnICO	
Pn200.0.	
Pn200.1.	
Pn200.3.	
Pn201	
Pn202	
Pn203	
Pn205	
Pn216	
Pn2A2	159
Pn2A3	159
$P_n 2\Delta A$	159
$D_{11}2/17$	150
D. 246	
Ph2A0	
Pn2A8	
Pn2ACO.	
Pn2B0	
Pn2B1	
Pn2B2	
Pn2B3	
Pn2C1	
Pn2C7	
Pn2C7.0	
Pn2C8	
Pn2C9	
Pn2CA	163
Pn2CR	163
$P_n 2CC$	164
$D_{n}^{2}D1$	
$D_{m2}D2$	
Pn2D2	
Pn2D4	
Pn300	
Pn301	
Pn302	
Pn303	
Pn304	
Pn305	78, 95, 97, 98, 99, 100, 101, 104, 110, 117, 120, 121,
1	22, 166, 168, 170, 176, , 180
Pn306	78, 95, 97, 98, 99, 100, 101, 104, 110, 117, 120, 121,
1	22, 166, 168, 170, 176, 180
Pn400	
Pn401	
Pn402	73 75 76
Pn403	73, 75, 76
$P_n/0/$	75 76 77 100
$D_{11} = 104$	
r 11403 Du 407	
Pn406	
Pn407	
Pn408.0.	168, 171, 173, 176, 181
Pn409	
Pn40A	

D. 500	129 120	120	160
Pn300	128, 129,	130,	105
Pn501		•••••	121
Pn502		•••••	132
Pn506		123,	124
Pn507		123,	124
Pn508			124
Pn509			135
Pn50A		111,	112
Pn50A.0		111.	112
Pn50A 1	113 128	162	215
Pn50A 2	110, 120,	102,	114
$P_{n} = 50A_{3}$		71	111
D _m 50P		/1,	117
FIJUD Du 50D 0		······ 71	114
Ph30B.0		/1,	114
Pn50B.1		/1,	114
Pn50B.2		71,	114
Pn50B.3		•••••	114
Pn50C			112
Pn50C.0			114
Pn50C.1			114
Pn50C.2			114
$Pn50C_3$			114
Pn50D			112
$P_{n}50D$		 71	112
F NJUD.U		/1,	114
Ph30D.1		•••••	114
Pn50D.2	115 100 100 101 100		114
Pn50E	115, 129, 130, 131, 132,	133,	163
Pn50E.0	115, 129, 130, 131, 132,	133,	163
Pn50E.1	115, 129, 130, 131, 132,	133,	163
Pn50E.2	115, 129, 130, 131, 132,	133,	163
Pn50E.3	115, 129, 130, 131, 132,	133,	163
Pn50F		133, .	163,
Pn50F.0.	75, 77, 115, 129, 130, , 130, , 131, 132,	133.	163
Pn50F.1.		133.	163
Pn50E2	115, 123, 129, 130, 131, 132,	133	163
Pn50F3	115 129 130 131 132 133	134	163
Pn510	115, 120, 130, 131, 132, 133, 115, 130, 131, 132	134, 134	163
$D_{m} 5100$	115, 120, 121, 122, 115, 120, 121, 122	122	162
F NJ10.0.	115, 129, 150, 151, 152,	155,	105
Pn000	10	•••••	13/
Position Con	trol Constants	•••••	68
Position Refe	prence	•••••	80
Principle of S	Speed Limit	•••••	106
Programmabl	le Constants		68
Programmabl	le I/O Signals		89
Pulse Divider	r Setting		87
Reference Pu	lse Inhibit Function (/inhibit)		110
Relationship	between Inhibit Signal and Reference Puls	es	111
Selecting a R	eference Pulse Form		82
Selection of l	Rotation Direction		98
SEN Signals		•••••	1/3
SERV Signals	nd Other Constants	•••••	69
Servo Gain a	Stern Made Constants	. 1 .	00
Servo Motor	Stop Wode for P-OT and N-OT Input Sign	ais	/1
Servo OFF S	top Mode Selections	•••••	119
Settings Acco	ording to Host Controller	•••••	78
Settings Acco	ording to Device Characteristics	•••••	69
Setting Level	2: External Torque Limit		76
Setting Reven	rse Rotation Mode		69
Setting the E	lectronic Gear (for Reference Pulses)		91

Se	etting the Overtravel Limit Function	70
SI	peed Coincidence Output (/V-CMP)	. 130
SI	peed Control Constants	68
SI	beed Reference	78
St	art and Stop	97
S	witches	C10
S	witching Servo Motor Rotation Direction	69
To	orque Control Constants	68
To	orque Control Parameter	. 105
To	orque Control Selection	. 100
To	orque Feed-Forward Function	. 106
To	orque limiting by Analog Voltage Reference	. 108
U	sing CN1-45 and /CN1-46 Signals	77
U	sing Contact Input Speed Control	95
U	sing Reference Pulse Inhibit Function (/INHIBIT)	. 110
U	sing Servo ON Input Signal (/S-ON)	. 127
U	sing the /CLT Signal	74
U	sing the Electronic Gear Function	91
U	sing the Encoder Signal Output	86
U	sing the Positioning Completed Output signal (/COIN)	. 128
U	sing the Running Output Signal (/TGON)	. 131
U	sing the Servo Ready Output Signal (/S-RDY)	. 132
U	sing the Torque Feed-Forward Function	. 107
U	sing the Warning Output Signal (/WARN)	. 133
U	sing Torque Limiting by Analog Voltage Reference	. 108
Powe	r	23
40	00 V Power Supply Voltage	B12
A	C Power Source Supply	17
A	pplying Power	25
С	onnecting The XtraDrive To An AC Power Supply	26
С	onnections to the XtraDrive	27
D	C Power Source Supply	17
D	C Reactors for Power Supplies Designed for	
	Minimum Harmonics	E5
D	etermining Drive AC Voltage Requirements	26
Η	andling Power Loss	. 135
Μ		10
М	agnetic Contactor	E8
101	agnetic Contactor olded-Case Circuit Breaker and Fuse Capacity	E8
Ra	agnetic Contactor Iolded-Case Circuit Breaker and Fuse Capacity atings and Specifications	E8 14 227
Ra	Iagnetic Contactor Iolded-Case Circuit Breaker and Fuse Capacity atings and Specifications eactor for Harmonic Suppression	E8 14 227 . B14
Ra Ra Se	Image: Additional Contractor Image: Additional Contractor Image: Additional Contrecontractor Image: Additional Contractor <	E8 14 227 . B14 9
Ra Ra Se Si	Image: Additional Contractor Image: Additional Contractor Image: Additional Contrector Image: Additional Contractor	E8 14 227 . B14 9 . B13
Ri Ri Si Si	Image: Additional and Structure Contactor Image: Additional and Structure Contact	E8 14 227 . B14 9 . B13 ns 28
Ra Ra Se Si Si	Image: Additional Contractor Image: Additional Contractor Image: Additional Contrector Image: Additional Contractor	E8 14 227 . B14 9 . B13 ns 28 27
Ri Ri Si Si Si Si	Image: Additional Contractor Image: Additional Contractor <td< td=""><td> E8 14 227 . B14 9 . B13 ns 28 27 E8</td></td<>	E8 14 227 . B14 9 . B13 ns 28 27 E8
Ri Ri Si Si Si Tl	Image: Additional Constraints Image: Additional Constraints Image: Addit Constraints Image: Addite	E8 14 . 227 . B14 9 . B13 ns 28 27 E8 29
Ri Ri Si Si Si Si Ti Ti	lagnetic Contactor lolded-Case Circuit Breaker and Fuse Capacity atings and Specifications eactor for Harmonic Suppression ervo motor Power (kW) ngle-Phase Power Supply Connection Example ngle-Phase 0.8kW and 1.5kW Main Circuit Specifications ngle-Phase 100V/200V Main Circuit Specifications irge Suppressor hree-Phase 200V Main Circuit Specifications hree-Phase 400 V Main Circuit Specifications	E8 14 . 227 . B14 9 . B13 ns 28 27 E8 29 30
Ri Ri Si Si Si TI TI W	Image: Additional Constraints Image: Additional Constraints Image: Addit Constraints Image: Addite	E8 14 . 227 . B14 9 . B13 1s . 28 27 E8 27 E8 29 30 14
Ri Ri Si Si Si Si Tl Tl W W	Image: Additional Construction Image: Additert Image: Addition	E8 14 . 227 . B14 9 . B13 ns . 28 27 E8 27 E8 29 30 14 13

R

Reference Pulse Inhibit	114
Regenerative Resistor	
Calculating the Regenerative Power Capacity	138
Connecting Regenerative Resistors	137, E14
Connections to the XtraDrive	27
Examples of External XtraDrive Regenerative Resistor	s E3

External Regenerative Resistor 137
External Regenerative Resistors E3
Operating Conditions for Allowable Regenerative Frequency
Calculation 139
Regenerative Energy Calculation Method 140
Selecting a Regenerative Resistor
Servo Amplifier's Absorbable Energy 141
Single- Phase 0.8kW and 1.5kW Main Circuit Specifications 28
Single- Phase 100V/200V Main Circuit Specifications 27
Specifications for XtraDrive Regenerative Resistors E3
Three- Phase 200V Main Circuit Specifications 29
Three- Phase 400 V Main Circuit Specifications 30
Reverse Current Limit 114
Reverse Run Prohibit 5, 33, 70, 114
NCT Gain Parameters 179
Servo Motor Stop Mode for P-OT and N-OT Input Signals 71

S

Serial Communication - CN3	7, 23, 35
Cable with RS-232 to RS-422 Active Adapter	E13
Communication Cables	23
Establishing Communications Between the PC and	
the XtraDrive	35
RS-232 Communication Cable	E11
Servo Adjustment	165
Additional Parameters Tuning	181
Adjusting Offset	168
Adjusting Speed Loop Gain	172
Analog Input or Contact Input Velocity Control	166
Analog Monitor	186
Filters	
Flexible System Parameters	182
Gain Factor	183
Gain Setting Reference Values	174
Integral Clear Parameters	183
Load Inertia Setting	171, 176
NCT Gain Parameters	179
NCT Position Control	176
Notch Filter	173
OCA - Oscillation Canceling Algorithm	180
Parameters of the Velocity Control	168
Position Control Block Diagram	178
Principle and Block Diagram of the Velocity Control	167
Reference Offset Adjustment	169
Reference Voltage Offset from Host Controller or	
External Circuitry	169
Selection of Control Mode	165
Setting the Input Gain	168
Setting the Torque Reference Filter Time Constant	173
Tuning Procedure for Position Control Parameters	184
Using the Soft Start Function	170
Signal Connection	
Input Signal Connections	89
Output Signal Connections	90
Specifications	
Base-Mounted Dimensional Drawings	
XD-02 (Single-phase 100V, 200W)	238
XD-04 (Single-phase 200V, 400W)	238

XD-05, 10, 15 (Three-phase 400V, 0.5 to 1.5kW)	240
XD-08 (Single-phase 200V, 0.75kW)	239
XD-10 (Three-phase 200V, 1.0kW)	239
XD-15 (Single-phase 200V, 1.5kW)	241
XD-20, -30 (Three-phase 200V, 400V, 2.0 and 3.0kW)	241
XD-50 (Three-phase 400V, 50kW)	242
XD-P3 to -01 (Single-phase 100V, 30 100W)	237
XD-P3 to -02 (Single-phase 200V, 30 to 200W)	237
Rack-Mounted Dimensional Drawings	
XD-02 (Single-phase 100V, 200W	244
XD-04 (Single-phase 200V, 400W)	244
XD-05, 10, 15 (Three-phase 400V, 0.5 to 1.5kW)	246
XD-08 (Single-phase 200V, 0.75kW)	245
XD-10 (Three-phase 200V, 1.0kW)	245
XD-15 (Single-phase 200V, 1.5kW)	247
XD-20, -30 (Three-phase 200V, 400V, 2.0 and 3.0kW)	247
XD-50 (Three-phase 400V, 50kW)	248
XD-P3 to -01 (Single-phase 100V, 30 to 100W)	243
XD-P3 to -02 (Single-phase 200V, 30 to 200W)	243
Ratings and Specifications	227
Single-Phase 100V XtraDrive and Motor Combinations	232
Single-Phase 200V XtraDrive and Motor Combinations	233
Three-Phase 200V XtraDrive and Motor Combinations	234
Three-Phase 400V XtraDrive and Motor Combinations	235
Speed Control Operation	
Pn000.1	102
Speed (Contact/ Analog) 49	, 57
Speed Analog 49	, 57
Speed Control (Analog / Zero Clamp) 49	, 58
Switching Servo Motor Rotation Direction	69
Typical Connections for Speed Control Operation	50
System Description	
Functioning System	19
System Requirements	
Computer System Requirements	20

Т

Typical Connections for Torque Control Operation	. 52
Torque (Analog) 49), 57
Torque Analog	
Speed (Contact/ Torque Analog) 49), 58
Torque limiting by Analog Voltage Reference	108
Using Torque Limiting by Analog Voltage Reference	108
Trial Operation	
Basic Mode Selection	. 38
Communications Menu - On-Line Option	. 36
Communications Settings	. 36
Establishing Communications Between the PC and	
the XtraDrive	. 35
Jog Operation Using Operator Panel	. 38
Operating Procedure	. 39
Trial Operation Testing The System	. 33
Two Methods of Testing	. 33
Two Methods of Trial Operation	. 33
Using the JOG Function.	. 37
Working with the XtraDrive Operator Panel	. 38

W

Wiring 4, 5, 14
Applying Power
Cables for Connecting PC to XtraDrive E11
Cable with RS-232 to RS-422 Active Adapter E13
CN-1 Wiring Diagrams for Operational Modes 49
Communication Cables
Connecting Feedback Cable and Motor Power
Connecting Pulse A/B Encoder without C Pulse (Index Pulse) E9
Connecting The XtraDrive To An AC Power Supply 26
Connections to the XtraDrive 23, 27
Connection Example 1: Line-driver Output 81
Connection Example 2: Open-Collector Output 81
Determining Drive AC Voltage Requirements
Environmental Factors
Forming A Protective Sequence 125
Grounding System 16
Handling Power Loss 135
Magnetic Contactor E8
Main Circuit 15

Main Circuit Terminal Blocks
Main Circuit Wire Size 15
MCCB or Fuse According to Power Capacity
Molded-Case Circuit Breaker and Fuse Capacity 14
Reactor for Harmonic Suppression
RS-232 Communication Cable E11
Signal Line Wire Sizes
Single-Phase Power Supply Connection Example
Single- Phase 0.8kW and 1.5kW Main Circuit Specifications 28
Single- Phase 100V/200V Main Circuit Specifications
Special Wiring
Speed Coincidence Output (/V-CMP) 130
Surge Suppressor E8
Three- Phase 200V Main Circuit Specifications
Three- Phase 400 V Main Circuit Specifications
Torque Reference Inputs 103
Typical Connections for Analog Torque Control 51
Typical Connections for NCT Position Control 54
Typical Connections for NCT Programming Operation 53
Typical Connections for Speed Control Operation 50
Typical Connections for Torque Control Operation 52
Using More Than One XtraDrive B10
Using the Positioning Completed Output Signal (/COIN) 128
Using Servo Alarm and Alarm Code Outputs 125
Using Servo ON Input Signal (/S-ON) 127
Using the Running Output Signal (/TGON) 131
Using the Servo Ready Output signal (/S-RDY) 132
Using the Warning Output signal (/WARN) 133
Variable Resistor for Speed Setting E8
Wiring Precautions

X

XtraWare 2	0,35
Setting Different Functions of the Drive	62
Setup the Mode of Operation	57
Speed Units RPM	61
Start a New Project	58
User Position Units	60
Using the XtraWare Setup Wizard	57

Z

Zero Clamp	114.	121
2010 Champ		

MAIN OFFICE: **YET Ltd. Israel** 13 Hamelacha St. Afeq Industrial Estate Rosh Ha'ayin 48091 ISRAEL Tel: +972-3-9004114 Fax: +972-3-9030412 E-mail: info@yetmotion.com Homepage: www.yetmotion.com

USA OFFICE: YET US Inc.

444 East Industrial Park Drive Manchester, NH 03109-5317 USA Toll Free: 866-YET-8080 Tel: 603-641-1822 Fax: 603-641-1239 E-mail: info@yet-motion.com Homepage: www.yet-motion.com

Copyright © 2006 by YET, Yaskawa Eshed Technology Ltd.